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Abstract—Modern build systems help increase developer pro-
ductivity by performing incremental building and testing. These
build systems view a software project as a group of inter-
dependent modules and perform regression test selection at the
module level. However, many large software projects have impre-
cise dependency graphs that lead to wasteful test executions. If
a test belongs to a module that has more dependencies than the
actual dependencies of the test, then it is executed unnecessarily
whenever a code change impacts those additional dependencies.

In this paper, we formulate the problem of wasteful test
executions due to suboptimal placement of tests in modules.
We propose a greedy algorithm to reduce the number of
test executions by suggesting test movements while considering
historical build information and actual dependencies of tests. We
have implemented our technique, called TestOptimizer, on top
of CloudBuild, the build system developed within Microsoft over
the last few years. We have evaluated the technique on five large
proprietary projects. Our results show that the suggested test
movements can lead to a reduction of 21.66 million test executions
(17.09%) across all our subject projects. We received encouraging
feedback from the developers of these projects; they accepted and
intend to implement ≈80% of our reported suggestions.

I. INTRODUCTION

Large-scale software development projects use build systems
to manage the process of building source code, applying static
analyzers, and executing tests. Any inefficiencies in the under-
lying build system directly impact developer productivity [5].
Given the significance of build systems, major companies,
such as Microsoft and Google, have made huge investments
in developing efficient, incremental, parallel, and distributed
build systems. Example build systems include CloudBuild [8],
[18], Bazel [1], and FASTBuild [2].

These build systems view a software project as a group of
inter-dependent modules and inherently perform (safe) regres-
sion test selection [9], [19], [24] at the module level. Given a
change, they leverage the build dependency graph to identify
modules that are impacted by the change and perform activities
(such as building or applying static analyzers) only on those
modules. More specifically, whenever any dependency of a
test module is impacted by the given change, all tests in that
module are executed; otherwise, the module is skipped and
no tests in the module are executed. The major advantage
of module-level test selection is that it does not require any
additional metadata (such as fine-grained dependencies like
exercised statements for each test) beyond what is available
in the build specification. Especially in the case of large

software projects that execute millions of tests each day,
storage and maintenance of this additional metadata adds non-
trivial overhead. Therefore, module-level test selection is the
most practical option for performing test selection.

Despite the increasing sophistication of build systems, large
software projects with thousands of modules often have de-
pendency graphs that make inefficient use of these build
systems. Such dependency graphs not only increase the build-
activity time, but also make module-level test selection less
efficient by executing tests that are not affected by the given
change. Vakilian et al. [22] studied the impact of monolithic
build modules on the performance of distributed builds. Their
work focuses on underutilized modules that include files not
needed by some of its dependents and attempts to split them
into smaller modules. Our work highlights another source of
inefficiency in the form of wasteful test executions due to test
placement in test modules that have more dependencies than
the tests actually need. Therefore, many irrelevant tests that are
not affected by a change often get executed due to changes
in developer-specified dependencies of the module, and such
changes cannot alter the behavior of these tests. Execution of
irrelevant tests can not only waste machine resources but can
also severely affect developer productivity if those irrelevant
tests are flaky [13]. Flaky tests are tests that can pass or fail
even without any changes to code. In practice, each test failure
requires developers to manually triage the failures and identify
the root cause. Therefore, when an irrelevant flaky test fails,
developers end up spending unnecessary effort debugging the
failure (which has nothing to do with their change) only to
identify that the failure is due to a flaky test.

From our experience with CloudBuild, the reasons for such
incorrect placement of tests include a lack of comprehensive
knowledge of all test modules in the project and developers
making large refactorings to the code base (more details in
Section V-D). The goal of our work is to provide a practical
solution to reduce the number of wasteful test executions under
the constraints imposed by the underlying build systems. Our
solution for finding better placement for tests is applicable
beyond just the CloudBuild build system, as it can be applied
to any build system that builds at the level of modules, such
as the build system that is used at Google (Bazel) [1].
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Fig. 1. An example dependency graph with build nodes A, B, C, and D; test
nodes X, Y, and Z, actual dependencies for tests t1 through t9, and the build
count (number of times built) for sets of build nodes

A. Running Example

To illustrate how a build system performs regression test
selection at the module level and the problem we address
in this paper, consider an example dependency graph shown
in Figure 1 for a hypothetical project. The example project
includes four application modules (A, B, C, and D), and three
test modules (X, Y, and Z). In the rest of this paper, we use
the notation build node to represent an application module and
test node to represent a test module. When a change happens
to the code in a build node, the build node is built, and all
build nodes and test nodes transitively dependent on that build
node are built as well. Whenever a test node is built, all the
tests inside it are also executed. For example, when test node
Z is built, tests t8 and t9 are executed. The directed edge from
C to A indicates that C is dependent on A.

Given this background, we next explain how this depen-
dency graph can lead to wasteful test executions. Suppose
that a developer makes a change to code in build node D.
As such, D is built, and test node Y, which depends on D, is
built as well, and all the tests in Y are executed. However, as
shown in Figure 1, tests t5 and t7 do not actually depend on
D, and they need not be executed when D changes. These two
tests are executed because they happen to be placed in Y. This
inefficiency is even worse if the dependencies change more
frequently. The table “Build Count” in Figure 1 shows the
number of times a set of build nodes are built together, e.g.,
the set of build nodes {A,B,C} are built 10 times together. We
see that, in this example, build node D by itself is built 1,000
times. As Y depends on D, it is built at least 1,000 times, hence
all tests in test node Y are executed at least 1,000 times. To be
more precise, the tests are executed 1,120 times, because these
tests also need to be executed when D is built in combination
with other build nodes and when B is built as well, resulting
in an additional 120 times (when sets {A,B,C}, {B,C}, {B,D},
and {B} are built).

B. Overview of Our Technique

In this paper, we focus on reducing wasteful test executions
due to incorrect placement of tests within test nodes. An ideal
placement of tests to avoid wasteful test executions is to place
each test in a test node that shares exactly the same set of
dependencies that are exercised by the test during its execution.
This placement ensures that only relevant tests get executed for
a given change. However, in large projects, moving thousands
of tests to achieve the ideal placement requires huge effort.
Given that developers are always under pressure to meet cus-
tomer requirements, they often have limited time to perform
these activities. Therefore, it is not practical to invest huge
effort (although one-time) in achieving the ideal placement.
Furthermore, introducing a large number of modules can
significantly increase the time to build all modules in the
project. Our technique addresses these issues by suggesting
movements that reduce the number of test executions while
minimizing the number of suggestions to give to developers.

Our technique, called TestOptimizer, accepts the following
inputs: dependency graph, actual dependencies for tests, and
number of times build nodes have been built over a given
range of time. TestOptimizer formulates the problem as a
decision problem, asking if there is a way to split test nodes
to reduce the overall number of wasteful test executions.
TestOptimizer uses a heuristic, called affinity, which is the
set of dependencies the tests in a test node should be testing
(Section IV-B). Affinity helps determine the tests that need not
be moved, i.e., tests that execute the affinity of its test node
are not amenable to movement. TestOptimizer uses a greedy
algorithm to iteratively suggest test movements that lead to
reductions in number of test executions. These suggestions
involve moving tests into a newly created test node or to an
existing test node that shares the exact same dependencies as
the tests. Furthermore, TestOptimizer suggests the test move-
ments ranked in the order of highest reduction in the number
of test executions first. We envision that developers can use
TestOptimizer once to get the correct placement of all tests.
Once the recommendations are incorporated, TestOptimizer
need to be executed only on added or modified tests.

For the example shown in Figure 1, TestOptimizer produces
two suggestions (moving tests t5 into a new test node and
moving tests t7 and t9 into a new test node). These suggestions
reduce the number of test executions by 2,230 test executions,
a 42% reduction (more details in Section III) for this example.

C. Contributions

This paper makes the following contributions:
• We formalize the problem of wasteful test executions due

to incorrect placement of tests in test nodes.
• We define a cost metric that models the expected number

of test executions in a given range of time based on
historical build count.

• We propose a technique, called TestOptimizer, that uses
a greedy algorithm to suggest test movements between
test nodes. Our technique produces a ranked list of



suggestions, prioritizing the ones that give the highest
reductions in the expected number of test executions.

• We implement TestOptimizer in a tool on top of Cloud-
Build, a widely used build system at Microsoft.

• To evaluate our tool, we apply it on five large proprietary
projects. Our results show that the suggested movements
can result in a reduction of 21.66 million test executions
(17.09%) across all our subjects. We received positive
feedback from the developers, who also accepted and
intend to implement ≈80% of our suggestions.

II. PROBLEM STATEMENT

Let B be the set of all build nodes for the project. Let N
be the set of all test nodes for the project. Let T be the set
of all the tests for the project, contained in the set of test
nodes. Let Π be a partitioning of T , and for a test node n,
let Π(n) ⊆ T be the set of tests contained in n. Given that
Π is a partitioning of T , Π(n1) ∩Π(n2) = ∅ for distinct test
nodes n1 and n2. For each test t, let TDeps(t) ⊆ B be all
the build nodes that t depends on – these are the build nodes
t needs to both compile and to execute. For the purpose of
this paper, we require that build nodes do not depend on test
nodes. Further, whenever a test node n is built, all the tests in
Π(n) are executed.

Consider a sequence of builds during a given range of time
R (say, over a six-month period). There are two factors that
influence the total number of test executions for a project
during R: (i) the count of the number of times test nodes
are built over R (given the incremental nature of a build, not
every test node in a project is built in a given build), and (ii)
the number of tests executed when building a test node.

Our solution changes the partitioning Π of tests by moving
tests from existing test nodes to other (possibly new) test
nodes. To compute the reduction in the number of test ex-
ecutions, we first need to compute the number of times test
nodes are built (the test nodes’ build counts) after a change in
partitioning Π without actually replaying the builds during R.

A. Computing Build Count for a Test Node

Let us assume we have collected the build count for all the
build nodes and test nodes during a past range of time R.
To determine the build count of a test node n after moving
tests across test nodes, one possibility is to simply reuse the
build count of n collected in that range of time R. However,
simply reusing the build count is inaccurate for two main
reasons. First, after moving tests between test nodes, there can
be changes to the dependencies of each existing test node.
Second, new test nodes can be added, which do not have
any existing build count information. Recall the example in
Figure 1. If test t8 is moved out of Z, that movement removes
the dependency that test node Z has on C. This modified test
node cannot be expected to have the same build count as
before. Similarly, if t7 is moved out of Y and into a brand
new test node that depends only on A, we would not have any
collected build count for this new test node.

However, in most cases we can accurately compute the build
count of a given test node entirely in terms of the build count
of the build nodes in B and the dependencies of the tests within
the given test node. We make the following assumptions during
the range of time R:

1) The dependencies of individual tests do not change.
2) Tests are changed, added or removed to the test nodes

only in conjunction with another change to a dependent
build node, i.e., a change does not affect test nodes only.

From our experience with CloudBuild, we believe these as-
sumptions hold for most test nodes. For the first assumption,
given that the dependencies in question are modules in the
project as opposed to finer-grained dependencies such as lines
or files, it is unlikely that there are drastic changes that lead
to changes in dependencies at the level of modules. For the
second assumption, we find that it is very rare for developers
to be only changing test code; they change code in build nodes
much more frequently and changes made to test nodes are in
response to those build node changes. As we explain below,
given these assumptions, we can compute precisely when a test
node n will be built, namely whenever at least one dependency
in TDeps(n) is built. Although these assumptions may not
hold for a very small fraction of test nodes during the time
frame R, their effect is negligible when R is sufficiently large
(e.g., a few months).

We define the dependencies of a test node n as the union
of the dependencies of the tests contained in n given Π.

Definition 1 (NDeps(n,Π)): For a given test node n, the
set of build nodes that n depends on under Π is defined as:

NDeps(n,Π)
.
= {b ∈ B | ∃t ∈ Π(n) such that b ∈ TDeps(t)}

Given our assumptions about test nodes, a test node n is
built if and only if a build node in NDeps(n,Π) is built.

For a subset B′ ⊆ B, let BC R(B′) denote the number of
builds where only the build nodes in B′ are built together.
The box in Figure 1 titled “Build Count” shows the number
of times each subset of build nodes is built, e.g., the exact
subset {A, B, C} was built 10 times in the range of time. Given
our assumptions of test nodes not changing, a test node n is
built in a build iff any of its dependencies is built. We can
thus compute the number of times a test node n is built by
summing up the build counts of BC R(B′) where B′ intersects
with NDeps(n,Π).

Definition 2 (NodeCountR(n,Π )): For a given test node
n, the computed number of times it is built during a range of
time R is defined as:

NodeCountR(n,Π )
.
=

∑
{B′⊆B | B′∩NDeps(n,Π )6=∅}

BC R(B′)

Since the set of all builds in R can be partitioned by using the
distinct subsets B′ as identifiers, we count each build exactly
once in the above equation.



B. Number of Test Executions in a Project

Our metric for the cost of testing is the number of tests that
are executed over R. As such, our definition of the testing cost
for a test node is related to the number of tests in the test node
and the number of times the test node would be built:

Definition 3 (NodeCostR(n,Π )): The number of test ex-
ecutions for a test node n within a range of time R is the
product of the number of tests in n and the build count of n
within R:

NodeCostR(n,Π )
.
= |Π (n)| ×NodeCountR(n,Π )

The total number of test executions for testing the entire
project would then be the sum of the number of test executions
for each test node.

Definition 4 (CostR(N ,Π )): The number of test executions
CostR(N ,Π ) needed for building all test nodes N in a project
within a range of time R is defined as:

CostR(N ,Π )
.
=

∑
n∈N

NodeCostR(n,Π )

C. Reducing Test Executions

Our goal is to reduce the number of test executions in
a project. While we could formulate the problem to allow
placement of tests to any test node irrespective of the initial
placement Π, the resulting ideal placement of tests could
be very different from the original placement of tests. Such
a placement would then result in too many suggested test
movements for the developers to implement, and it is not
practical to invest huge effort (although one-time) in achieving
this ideal placement of tests.

In this paper, we consider the option of splitting a test node
n into two test nodes {n, n′} (n′ 6∈ N ) where a subset of tests
from n are moved to n′. As such, we can constrain the number
of suggested test movements to report to developers. We define
Πn (over N ∪ {n′}) to be identical to Π at N \ {n, n′}, and
the disjoint union Πn(n)]Πn(n′) = Π(n), meaning that Πn

only moves a subset of tests (possibly empty) from n to n′.
Our test placement problem can now be restated as the

following decision problem:
Does there exist a n ∈ N such that CostR(N ,Π ) >
CostR(N ∪ {n ′},Π n) + c?

where c is a constant value representing a threshold for
reducing at least a certain number of test executions.

The threshold c acts as a knob for controlling suggestions,
where a split is suggested only when the reduction in number
of test executions is worth the overhead of the developer
implementing the suggestion. Essentially, c represents the min-
imal return-on-investment that can be expected by a developer
to implement the suggested split. With multiple such n that
reduce the number of test executions by at least c, the one that
provides the highest reduction can be chosen first.

III. TESTOPTIMIZER

Our technique, called TestOptimizer, provides a practical
solution to reduce the number of wasteful test executions.

Algorithm 1 Splitting a test node
1: procedure SPLITTESTNODE(n, Π, R)
2: groups ← NewMap()
3: for each t ∈ Π(n) do
4: deps ← TDeps(t)
5: if ¬groups.ContainsKey(deps) then
6: groups[deps]← ∅
7: end if
8: groups[deps]← groups[deps] ∪ {t}
9: end for

10: n′ ← NewNode()
11: Πn ← NewPartition(Π, n′)
12: repeat
13: tests← ∅
14: maxCost← CostR({n,n ′},Π n)
15: for each deps ∈ groups.Keys do
16: Π′ ← Πn

17: RemoveTests(Π′, n, groups[deps])
18: AddTests(Π′, n′, groups[deps])
19: newCost← CostR({n,n ′},Π ′)
20: if newCost < maxCost then
21: tests← groups[deps]
22: maxCost← newCost
23: end if
24: end for
25: if tests 6= ∅ then
26: RemoveTests(Πn, n, tests)
27: AddTests(Πn, n′, tests)
28: end if
29: until tests = {}
30: return Πn, n′

31: end procedure

More specifically, TestOptimizer produces a ranked list of
suggestions that help reduce a large number of wasteful test
executions with minimal test movements. Our technique also
allows developers to specify threshold c in terms of the number
of test executions that should be reduced for a suggestion. The
suggestions also include additional recommendations where
tests can be moved into existing test nodes, in case such test
nodes already exist in the dependency graph. We first present
how TestOptimizer splits a single test node into two test nodes
and then explain how to use the single-split algorithm to deal
with all test nodes in a given project.

A. Splitting a Test Node

Given a test node, we seek to find a subset of tests that
can be moved to a new test node, resulting in the highest
reduction in number of test executions. We use an iterative
greedy algorithm to find such subset of tests that can be moved
from the given test node.

Algorithm 1 shows the individual steps. Given a test node
n, the loop in lines 3 to 9 iterates over the individual tests in
that test node. For each test t, our algorithm gets the build
nodes the test depends on using TDeps(t). If an existing



Iteration Node Y Node Y1 # Test Execs
1 g1 : {t4} 4,480

g2 : {t5}
g3 : {t6}
g4 : {t7}

2 g1 : {t4} g4 : {t7} 3,370
g2 : {t5}
g3 : {t6}

3 g1 : {t4} g4 : {t7} 2,480
g3 : {t6} g2 : {t5}

TABLE I
STEPS IN SPLITTING TEST NODE Y

group of tests already shares the same set of build nodes as
dependencies, the test is added to that group; otherwise, a new
group is created.

Next, the algorithm simulates moving groups of tests into
another (initially empty) test node so as to identify the group
that results in the highest reduction. At line 10, the algorithm
makes a new test node n′, and at line 11, the algorithm makes
a new partitioning Πn that includes n′. The loop 15 to 24
iterates through the groups and simulates moving each group
of tests from n to n′. The simulation is done by using a
temporary partitioning Π′ that starts as Πn but is modified
by using RemoveTests to remove a group of tests from n
and then using AddTests to add the same group of tests to
n′. The algorithm chooses the group of tests whose movement
results in the highest reduction in number of test executions.
The outer loop (lines 12 to 29) greedily chooses to move that
group of tests from n into n′ (lines 25 to 28) by modifying that
new partitioning Πn. The outer loop iterates until there are no
groups that help reduce the number of test executions. When
the loop terminates, the algorithm returns the new partitioning
Πn and the new test node n′. In case n cannot be split, Πn

will map n′ to an empty set. Our algorithm moves groups of
tests instead of individual tests in each iteration due to two
reasons. First, moving groups of tests instead of individual
tests can make the search faster. Second, since the group of
tests share the same dependencies, the tests are likely related
to each other and should be placed in the same test node.

In the example dependency graph shown in Figure 1,
consider the given test node n as Y. Table I shows the result
after each iteration of the outer loop (lines 12 to 29). Initially,
Loop 3 to 9 identifies four groups of tests, shown as g1 to
g4. The initial number of test executions computed is 4, 480.
At the end of the first iteration of the outer loop, group g4 is
selected as the group that results in the highest reduction in the
number of test executions, resulting in 3, 370 test executions.
Note that g4 includes the test t7 that depends only on A, which
is the root node of the dependency graph. Therefore, it is
clearly evident that a large number of wasteful test executions
is due to the test t7. After one more iteration, the algorithm
returns the partitioning that maps test node n to tests in groups
g1 and g3 and maps new test node n′ to tests in groups g2 and
g4; this results in a final 2, 480 test executions.

B. Handling all Test Nodes

We next explain how we use the previous algorithm to
deal with all test nodes in the given project. Given a set of
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Fig. 2. Final dependency graph after applying our suggestions

test nodes, TestOptimizer applies Algorithm 1 to each test
node to find a split that results in the highest reduction.
In case the algorithm returns a partitioning where the new
test node is mapped to no tests, TestOptimizer considers
that the test node under analysis cannot be split further. In
each iteration, TestOptimizer finds the test node that has the
best split, i.e., producing the highest reduction in the number
of test executions. TestOptimizer then updates the overall
partitioning with the returned partitioning for that best split
and adds the new test node into the set of all test nodes.
TestOptimizer repeats these steps until there exist no test node
that can be split any further. At the end, TestOptimizer returns
all suggestions ranked in descending order based on their
reductions in number of test executions. If there are any new
test nodes that share the exact same dependencies as another
test node (new or existing), TestOptimizer also makes the
suggestion to combine the two test nodes into one.

TestOptimizer also allows developers to specify thresholds
for a split. From Section II-C, this is the threshold value c,
representing the minimal number of test executions a split
must reduce by. The threshold is implemented by adding
an additional condition to line 20 in Algorithm 1. These
criteria can help eliminate trivial suggestions that may not be
worthwhile of the effort required to implement the suggestion.

Returning to our running example, consider the threshold c
as 100 test executions. Our technique first splits Y, creating
new test node Y1, as shown in Table I. It next splits Z,
creating new test node Z1, where Z now only includes t8
and Z1 includes t9. Our technique finally splits Y1, creating
new test node Y2; Y1 now includes t5 and Y2 includes t7.
TestOptimizer terminates since no further split can achieve
the given criterion. TestOptimizer also suggests the two test
nodes Y2 and Z1 including tests t7 and t9, respectively, can
be combined into one test node A1, since both the tests
share exactly the same dependency. Figure 2 shows the final
dependency graph after applying our suggestions. Overall,
for this example, our technique reduces the number of test
executions by 2, 230.

C. Properties of TestOptimizer

Using our technique, we can guarantee that every suggestion
does indeed ensure a reduction in number of test executions.
However, our technique may fail to find a split that reduces
the cost, even if there exists one. This is due to the greedy
nature of the algorithm that only moves one group of tests



(that share the same dependency) from n to the split node
n′ (one that provides the maximum reduction in number of
test executions). For lack of space, we omit such an example
(there exists one) that shows the limitation of our algorithm.

IV. IMPLEMENTATION

We implemented TestOptimizer as a prototype on top of
CloudBuild [8], a widely used build system at Microsoft. Cur-
rently, CloudBuild handles thousands of builds and executes
millions of tests each day.

A. Code Coverage

For our implementation, we targeted the tests written using
the Visual Studio Team Test (VsTest) framework [4], as the
majority of tests in CloudBuild are executed using VsTest.
Since TestOptimizer requires actual dependencies of each
individual test, we use the Magellan code coverage tool [3] to
collect those dependencies. In particular, we first instrument
the binaries in a project, where a binary corresponds to a
build node, using Magellan. We then execute the tests on the
instrumented binaries and save a coverage trace for each test.
The coverage trace includes all blocks that are executed by the
test. We map these blocks to the build nodes to construct the
set of actual dependencies for each test. Our implementation
also handles the special constructs such as AssemblyInitialize
and ClassInitialize that have specific semantics in VsTest.
For example, AssemblyInitialize is executed only once when
running all the tests in a test node, but the binaries exercised
should be dependencies to all the tests in that test node.

B. Test Node Affinity

We use affinity to refer to the set of build nodes that are
intended to be tested by a test node. Affinity helps avoid
suggesting moving tests that are already in the right test node
and also helps improve the scalability of our technique. Ideally,
one would ask the developers to provide the set of build nodes
each test node is intended to test. However, as it is infeasible
to ask the developers to spend time labelling every single test
node, we instead develop a heuristic to automatically compute
the affinity for any given test node n.

First, we compute the dependencies NDeps(n,Π) of the test
node. Next, we compute Γ(b, n) of each b ∈ NDeps(n,Π) as
the number of tests in n that covers b during their execution.

Γ(b, n) = |{t ∈ n|b ∈ TDeps(t)}|

Finally, let ΓMax(n) = max{b′∈NDeps(n,Π)} Γ(b′, n), the
maximum Γ value among all build nodes in n. We compute
the affinity as:

Affinity(n) = {b ∈ NDeps(n,Π)|Γ(b, n) = ΓMax(n)}

Once the affinity is computed, any test that does not exercise
all dependencies in Affinity(n) is considered to be amenable
for movement, called an amenable test. In the context of
Algorithm 1, affinity can be implemented by modifying line 3
to skip tests that exercise all dependencies in Affinity(n). Our
experimental results show that affinity helped exclude a large

# Build # Test # Build Count
Subject KLOC Nodes Nodes # Tests Entries
ProjA 468 431 135 7,228 297,370
ProjB 926 416 90 5,870 127,030
ProjC 1,437 574 111 7,667 810,030
ProjD 3,366 1,268 184 12,918 6,522,056
ProjE 29,058 8,540 173 17,110 34,486,308
Overall 35,255 11,229 693 50,793 42,242,794
Average 7,051 2,245 138 10,158 8,448,558

TABLE II
STATISTICS OF SUBJECTS USED IN OUR EVALUATION

number of tests from our analysis, and it also provided more
logical suggestions. Furthermore, we found that developers
tend to agree with the affinity computed for each test node
(Section V-D). As per the developer feedback, our technique
is able to identify the affinity correctly for 99% of the test
nodes in our subjects.

C. Output

TestOptimizer generates an HTML report with all sugges-
tions that can help reduce the number of test executions.
The report displays metrics concerning the number of test
executions with the current placement of tests and the build
count for the current test nodes. For each test node with
tests amenable for movement, the report suggests how to
split the test node to reduce the number of test executions.
Furthermore, the report also suggests any existing test nodes
where the tests can be moved into instead of making a new
test node. Existing test nodes are suggested only when the test
node shares the exact same dependencies as the tests to be
moved. The suggestions are shown in a ranked order starting
with the test nodes that achieve the highest reductions. This
ranked list can help developers in prioritizing their effort. For
completeness, the report also includes the test nodes that were
found to not contain any tests amenable for movements as to
give the developer a more complete picture.

V. EVALUATION

In our evaluation, we address the following three research
questions:
• RQ1. How many test executions can be saved by applying

TestOptimizer suggestions?
• RQ2. How scalable is TestOptimizer in handling large

real-world projects?
• RQ3. What is the developer feedback for the suggestions

of TestOptimizer?

A. Experimental Setup

We applied our technique on five medium to large propri-
etary projects that use CloudBuild as the underlying build
system. Table II shows the statistics of our subjects. For
confidentiality reasons, we refer to our subjects as ProjA,
ProjB, ProjC, ProjD, and ProjE. The row “Overall” is the
sum of all the values in each column. The row “Average”
is the arithmetic average of all the values in each column. All
subjects primarily use C# as the main programming language,
but also include some code in other languages such as C++



or Powershell. Column 2 shows the size of C# code in
each subject. As shown in the table, our subjects range from
medium-scale (468 KLOC) to large-scale projects (29,058
KLOC). Column 3 shows the number of build nodes, and
Column 4 shows the number of test nodes. Column 5 shows
the number of (manually written) tests in each subject.

For each subject, we collect historical data about the number
of times sets of build nodes are built in a previous range of
time. CloudBuild maintains this information about each build
in a SQL Server database. Using this database, we computed
the “Build Count” information for sets of build nodes during
the time period of 180 days starting from Feb 1st, 2016.
Column 6 shows the number of table entries in the database
for each subject, where each entry is a set of build nodes for
the subject along with the number of times those build nodes
were built together. In our running example from Figure 1,
this number would correspond to the number of entries in the
box titled “Build Count” for each subject. The historical data
is over a period of 180 days for all subjects, except ProjE.
We could not collect 180 days worth of historical data for
ProjE, our largest subject, due to out-of-memory errors, since
our tool performs all in-memory computations. Therefore, for
ProjE, we used only 30 days worth of historical data (from
the same start date).

The split criterion we used as a configuration option to our
technique is to split a test node only if the reduction is at
least 2, 000 test executions (setting the threshold value c to be
2, 000). We used this criteria based on our discussions with
the developers of our subjects. Finally, although we compute
the reduction based on the historical data over a range of time
R in the past, we present to developers the results as potential
savings for a future range of time R (as future savings is what
matters more to developers), under the assumption that the past
is a good indicator for the future.

B. Results

Regarding RQ1, Table III presents the results showing the
reduction in terms of number of test executions after applying
TestOptimizer. Column 2 shows the number of test nodes
where TestOptimizer found amenable tests, based on affinity
(Section IV-B). Test nodes with amenable tests are amenable
test nodes. Column 3 shows the number of amenable tests. The
percentage of amenable test nodes range from 5.55% (5 / 90
in ProjB) to 17.34% (30 / 173 in ProjE). These results indicate
that developers often ensure that tests are placed in the correct
test node. However, the fact that there are tests in incorrect test
nodes suggests that developers can still make mistakes as to
where the tests belong to, especially if they lack a global view
of the project, so there is still room for improvement. Up to
3,946 tests across all subjects can be moved as to reduce the
number of test executions.

Column 4 shows the number of tests that were actually
suggested to be moved by TestOptimizer, meaning their move-
ment can provide a substantial reduction in the number of test
executions. Column 5 shows the number of new test nodes
that need to be created for the tests to be moved into (not

including any existing test nodes that already exactly share the
dependencies of the tests to be moved). Column 6 shows the
number of test executions (in millions) for the original place-
ment of tests based on historical data. Columns 7-9 show the
reductions if developers were to implement the suggestions.
Column 7 shows the reduction in terms of number of test
executions, while Column 8 shows the percentage of reduction
when compared against the original number of test executions
(Column 6). However, these columns show the reduction
relative to the number of test executions of all test nodes
in the project; there are many test nodes that TestOptimizer
found as non-amenable. Column 9 also shows percentages but
compared against the number of test executions concerning
only the amenable test nodes, essentially compared against
only the test nodes that TestOptimizer can actually suggest
movements from. When considering only the amenable test
nodes, we see the percentage of reduction in number of test
executions is higher compared with the reductions based on
all the test nodes. For the percentages in the table, the row
“Overall” is computed as the total reduction in number of
test executions across all subjects over the total number of
original test executions. “Average” is the arithmetic average of
all the percentages. To address RQ1, TestOptimizer can help
reduce millions of test executions (up to 2,377,208) among our
subjects. By considering only the amenable test nodes, these
reductions range from 5.49% to 16.54% among our subjects.

Regarding RQ2, Column 10 shows the time (in minutes)
taken by TestOptimizer to analyze the historical data and
to run through its algorithm to suggest movements for each
subject. Our results show that the analysis time ranges from
0.44 minutes up to 994.32 minutes (≈16 hours). The time
seems to be a factor of the number of build nodes, test nodes,
tests, and the amount of historical data available. We find
this time can still be reasonable as we envision our technique
to be run infrequently. We also envision TestOptimizer can
be run incrementally by only analyzing newly added tests
as to suggest to developers the best test node to place new
tests; TestOptimizer can work quickly when analyzing only
a small number of tests. Furthermore, TestOptimizer is still a
prototype, and it can be improve by implementing lazy loading
of data and caching previous computations to avoid repeated
calculations of build count.

C. Spurious Dependencies

In our experience, we found that some of the test nodes
have additional developer-specified dependencies that are not
required by any tests inside that test node. We refer to
such dependencies as spurious dependencies. The primary
reason for spurious dependencies could be the evolution of
the application code. More specifically, developers could have
originally specified a test node in the build system to have
some dependencies, but after code changes the tests were
moved around so that the test node no longer depends on some
of those developer-specified dependencies. As such, when a
spurious dependency is built, the dependent test node is built
unnecessarily, causing a number of wasteful test executions.



# Orig Reduced Test Execs
# Amenable # Amenable # Moved # New Test Execs All Amenable Time to

Subject Test Nodes Tests Tests Test Nodes (millions) # % % Analyze (min)
ProjA 20 1,343 1,047 25 9.88 635,815 6.43 10.56 12.93
ProjB 5 328 291 4 2.36 46,393 1.96 5.49 0.44
ProjC 15 364 333 12 17.10 779,523 4.56 13.87 11.89
ProjD 15 358 312 13 63.56 2,377,208 3.74 7.76 315.41
ProjE 30 1,553 1,250 28 18.26 1,498,045 8.20 16.54 994.32
Overall 85 3,946 3,233 82 111.16 5,336,984 4.80 10.22 1,334.99
Average 17 789 646 16 22.23 1,067,396 4.97 10.84 266.99

TABLE III
RESULTS OF APPLYING TESTOPTIMIZER ON OUR SUBJECTS

Spurious Deps # Test Reduced
# # Execs Test Execs

Subject Test Nodes Deps (millions) # %
ProjA 8 12 10.04 796,250 7.93
ProjB 35 44 2.40 82,498 3.43
ProjC 36 43 20.40 4,842,269 20.00
ProjD 68 116 69.68 8,497,928 12.20
ProjE 115 190 24.21 7,445,681 30.75
Overall 262 405 126.73 21,664,626 17.09
Average 52 81 25.34 4,332,925 14.86

TABLE IV
RESULTS WHEN CONSIDERING SPURIOUS DEPENDENCIES

A spurious dependency can be simply removed and all the
tests within the test node will still run properly. Given TestOp-
timizer, spurious dependencies are the build nodes declared
as dependencies in the build specification for a test node but
are not covered by the test node’s tests. Table IV shows the
number of test nodes that have spurious dependencies in each
subject (Column 2) along with the total number of spurious
dependencies those test nodes depended on (Column 3). For
some subjects, such as ProjB and ProjE, we see that almost
50% of all test nodes have spurious dependencies.

Although detecting spurious dependencies is not a core con-
tribution, it is an additional advantage of our technique. The
reduction in number of test executions after both moving tests
and removing spurious dependencies is the reduction develop-
ers would actually obtain. Table IV shows the effects of having
spurious dependencies and the reduction in the number of test
executions for each subject. Column 4 shows the number of
test executions (in millions) for each subject using developer-
specified dependencies for each test node. The number of test
executions is higher than the values shown in Table III, as they
include the effects of these spurious dependencies. Columns 5
and 6 show the reduction in number of test executions for each
subject after the suggested test movements from TestOptimizer
relative to the number of test executions obtained using the
developer-specified dependencies. Compared to the reductions
seen in Table III, the reduction is higher. We also see cases
where spurious dependencies seem to be a big problem. To
give an estimate of how the reduction in the number of test
executions map to savings in terms of machine time, we
calculated the average time (154 ms) across all the tests of
the five subjects. Using this average test execution time and
the reduction of number of test executions, our results show
that TestOptimizer can help save 38.61 days of machine time.

Accepted Valid/Rejected Invalid
Subject Sugg. Sugg. Sugg. Sugg.
ProjA 20 16 3 1
ProjB 5 4 1 0
ProjC 5 5 0 0
ProjD 15 13 0 2
Overall 45 38 4 3
Average 11 9 1 1

TABLE V
FEEDBACK FROM DEVELOPERS OF FOUR SUBJECTS

D. Developer Feedback

Regarding RQ3, we approached the developers of our sub-
jects to receive their feedback on suggested test movements.
We received feedback from the developers of four of our
subjects: ProjA, ProjB, ProjC, and ProjD, and yet to receive
the feedback for the remaining subject. Table V presents the
results for each of these four subjects. Column 2 shows the
number of test movement suggestions reported by our tool,
which is counted by the number of test nodes where our
tool found tests amenable for movement. Column 3 shows
the number of suggestions accepted by developers, and they
intend to implement the suggestions. Column 4 shows the
number of suggestions that the developers considered as valid,
but they do not intend to implement the suggestions. Finally,
Column 5 shows the number of suggestions that the developers
considered as invalid. As shown in our results, 84.44% of
the suggestions were indeed accepted by the developers.
Furthermore, among the 16 accepted suggestions in ProjA,
developers already implemented six of the suggestions.

Overall, we received highly encouraging feedback from the
developers. The feedback also helped us understand how code
evolution resulted in wasteful test executions. For example, a
developer informed us that some application code was moved
from one build node to a new one as a part of a major
refactoring. However, the related test code was not moved
into the relevant test node. Since the original test node still
had a dependency on the new build node, tests continued to
execute properly, but the tests would also execute when any
other dependency the original test node had was built. After
analyzing our suggestions, the developer felt that our technique
could also be quite helpful finding a better organization of
the tests. This response is encouraging, since it demonstrates
TestOptimizer’s ability in addressing issues beyond wasteful
test executions. Another feedback was that developers may
not be aware of an existing test node better suited for their
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Fig. 3. An example dependency graph illustrating the scenario where
developers tend to accept our suggested movements

tests, especially with many developers and many nodes in the
project. Therefore, developers tend to place tests in some test
node they are familiar with; they later add more dependencies
to that test node, eventually leading to wasteful test executions.
Developers also appreciated the idea that our suggestions
can help break edges from test nodes to build nodes in the
dependency graph, thereby reducing the build time along with
the test execution time (breaking edges prevents test nodes
from being built, which itself takes some time in the build
system). The developers we approached also asked that we
provide these reports at regular intervals (e.g., once per week),
so they can monitor and improve the health of their project.

Accepted: We present the two common scenarios under
which developers tend to accept our suggestions (Column 3
in Table V). We use the dependency graph shown in Figure 3
as an illustrative example. In the graph, test node X that is
dependent on build nodes B and C. The figure also shows the
build counts of B and C, where the build count of C is much
greater than the build count of B. The figure shows that the
X includes 100 tests, where most of them are dependent on
B and only a few (just one in this example) depends on C.
The primary issue is that most of the tests in X are wastefully
executed due to the high build count of C. In this scenario, our
technique typically suggests to move the tests in X into a test
node that is dependent only on B. We noticed that developers
tend to accept our suggestions in these scenarios, since they
help reduce a large number of test executions in test nodes
such as X. Another common scenario where developers often
accepted our suggestion is when there already exist a test node
with the exact same set of dependencies where the tests can be
moved. In this scenario, the effort involved in implementing
the suggestion is minimal, i.e., developers just need to copy-
paste the tests into the existing test node.

Valid/Rejected: We present the common scenario under
which developers considered that the suggestions are valid,
but not willing to implement those suggestions (Column 4 of
Table V). We use the same dependency graph in Figure 3
as an illustrative example, this time focusing on test node Y

instead. In Y, the majority of the tests have a dependency on
C instead of B. Although this scenario could result in wasteful
test executions with respect to tests such as t100, it is not as

Component1 Component2

B

X Y

Component1 Component2

B1

X Y

B1

Fig. 4. An example scenario where our suggestion leads to a higher-level
refactoring of a build node

significant (since only a few tests are impacted) compared to
the dependency graph shown in Figure 3. Due to the lower
benefit in implementing the suggestion, developers seemed
reluctant in moving such tests, especially when there is no
existing test node the tests can simply be moved into.

Invalid: Regarding the suggestions that are considered as
invalid (Column 5 of Table V), we found that they are
primarily due to implementation issues. TestOptimizer relies
on code coverage to collect test traces, in this case using
Magellan. In case a test exercises a binary via only a constant
or refers to a class using constructs such as typeof, we noticed
that Magellan does not collect the necessary dependency, a
limitation in the code coverage tool. Due to such missing
dependencies, our tool suggested invalid movements that were
rejected by the developers. In the future, we plan to explore
further on how to collect dependencies in these scenarios.

Interesting Scenario: We finally present an interesting
scenario where our suggestion led to a higher-level refactoring
of a build node. Figure 4 shows two major components in the
project, where each component contains several build nodes.
There are two test nodes X and Y, which are intended to test
build nodes in Component1 and Component2, respectively.
However, due to the build node B, changes in Component1 can
trigger tests in Y, and similarly changes in Component2 can
trigger tests in X. In an attempt to implement our suggestion
in X, instead of splitting X, the developer split the build node
B into two build nodes B1 and B2. The resulting dependency
graph is shown in the figure, where the split helped remove
dependencies between the build nodes and test nodes. This
is very encouraging feedback, since our suggestions can help
developers make insightful decisions in removing major un-
necessary dependencies in the project. In our future work, we
plan to explore how to automatically suggest these higher-level
refactorings for build nodes.

E. Verifiability

Due to legal issues, we can neither reveal the names of
our subjects nor release the TestOptimizer code. We can share
anonymized output of TestOptimizer for each subject1.

VI. RELATED WORK

Our work is related to existing work on regression test
selection [7], [10], [11], [17], [19], [24]. Given a change,
these techniques aim to select a subset of affected tests. The
key idea of these techniques is to maintain some metadata,
such as statements covered by tests on the previous version,

1http://mir.cs.illinois.edu/awshi2/testoptimizer



and leverage this metadata to select a subset of tests that are
affected by the change. Recent work by Gligoric et al. [9]
found regression test selection that tracks dependencies at the
coarse granularity level of files to be effective. The build
system our work focus on performs regression test selection
at the even coarser granularity level of modules.

Harrold et al. [10] specify that selection can be based on
coarser-grained entities, such as methods, classes, or modules.
A major advantage of module-level regression test selection
is that it is extremely light-weight and highly scalable, which
is why it is widely used in practice. TestOptimizer improves
this regression test selection that naturally comes with the
build system. In contrast to previous finer-grained regression
test selection techniques, our technique does not require any
additional information beyond what is needed for building the
modules. Although previous techniques can further reduce the
number of test executions by doing the selection on each test
node, we argue that these previous techniques do not help as
much due to the following reasons. First, existing techniques
assume that tests are executed at the end of the build. There-
fore, even if there exists a single test (in a test node) that
is impacted by the change, the entire test node still needs to
be built. In contrast to that, our technique can help skip the
build of that test node as well. Second, existing techniques
require storage and maintenance of metadata, which needs to
be updated along with the changes in the underlying modules.
This aspect adds non-trivial overhead in the case of millions
of test executions. Instead, our technique does not require
any additional information beyond what build system already
saves. Finally, our technique can also be extended to refactor
application code as well to further fine-tune the dependency
graph; we plan to focus on this in our future work.

There has been some previous work on improving regres-
sion testing in the industrial environment. Elbaum et al. [6]
proposed improving regression testing at Google through a
combination of test selection in a pre-submit phase and test
prioritization in a post-submit phase. Instead of collecting
coverage for test selection and prioritization, they considered
historical test failures to determine what tests to run and what
order to run them. Herzig et al. [12] proposed a test-selection
technique based on cost model. Their technique dynamically
skips tests when the expected cost of running a test exceeds
the expected cost of not running the test. All tests are still run
at least once before the code is released, so defect detection
is merely delayed (but can potentially be more costly to
fix). These previous techniques complement our technique. In
contrast to their techniques, we can guarantee that some tests
can be ignored by moving to a different test node since they
are not relevant for the given change. Therefore, we envision
that developers can use our technique to avoid running tests
that are not relevant for a change and then use their techniques
to further reduce the number of test executions.

There exists work on techniques to improve the efficiency
of builds [14], [15], [20]. Telea and Voinea [21] developed a
tool that decomposes header files (in C/C++ code) to remove
performance bottlenecks. Morgenthaler et al. [16] developed

a tool that ranks libraries based on their utilization rank to
identify under utilized nodes that can be refactored.

Our work is closely related to Vakilian et al. [22] that
attempts to decompose build nodes into two or more nodes
to improve build times. Their work shares a similar goal with
our work, i.e., avoid unnecessary building of nodes when
dependencies change. TestOptimizer significantly differs from
their technique due to the following reasons. First, we focus
on moving individual tests in test nodes into either existing or
new test nodes. We allow movements to existing test nodes,
as opposed to their technique that only creates new nodes.
Second, since test nodes are essentially the leaf nodes in the
dependency graph, we do not have to update dependencies
for any child nodes. Third, their technique does not take
historical information into consideration, i.e., they assume all
nodes are built in every build. In contrast to that, we take
historical information into consideration to ensure that tests
are moved away from test nodes that have a high historical
build count. Finally, their techniques identifies dependencies
statically, whereas our technique uses dynamic analysis (code
coverage), which is more precise. Although, it would be
ideal to evaluate both techniques on common subjects, it is
not practical since both are proprietary applications and are
targeted for different technologies.

VII. CONCLUSIONS

In this paper, we present TestOptimizer, a technique that
helps reduce wasteful test executions due to suboptimal place-
ment of tests. We formulate the problem of wasteful test exe-
cutions and develop an algorithm for reducing the number of
wasteful test executions. We have implemented our technique
in a prototype tool on top of Microsoft’s CloudBuild. We
show the effectiveness of TestOptimizer by applying it on
five proprietary projects. Our results show that our technique
can reduce 21.66 million test executions (17.09%) across all
our subjects. Furthermore, developers of four of our subjects
accepted and intend to implement ≈80% of our suggestions;
developers have already implemented some of these sugges-
tions as well. Beyond saving machine resources, the reduction
in test executions can also help reduce the developer effort
in triaging the test failures, if these irrelevant tests are flaky.
In future work, we plan to use TestOptimizer incrementally to
suggest ideal placements for newly added tests, soon after they
are added. We also plan to extend TestOptimizer to refactoring
build nodes as well to improve build times. Finally, we plan
on exploring large-scale automated refactoring techniques [23]
for applying our suggestions.
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