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Abstract
Emerging non-volatile memories (NVMs) like battery-

backed DRAM and phase-change memory offer durability
at higher speeds than traditional storage. Each technology
represents a different point in the cost, performance and en-
durance space. In this paper, we propose that storage intensive
applications use more than one kind of NVM in configurable
proportions to strike a balance between cost, performance and
endurance.

Furthermore, in virtualized environments, we show that a
fixed ratio of different NVMs across co-located applications
may not be ideal. We propose a new resource allocation and
scheduling algorithm to enable cloud providers to help co-
located applications use different proportions of NVM while
meeting latency and capacity requirements. We evaluate the
proposed design by simulating several storage intensive work-
loads and demonstrate average cost savings of 33% for cloud
providers while degrading performance by only 4% and not
violating any service-level agreements. Compared to conven-
tional scheduling algorithms, the proposed scheduling algo-
rithm reduces a cloud provider’s penalty cost and operation
cost by more than 20%, 50%, and 50% at low, medium, and
high server loads.

1. Introduction
Embracing diverse non-volatile memories (NVMs) can help
improve overall performance and control costs. NVMs such
as battery-backed DRAM (BBRAM), phase-change memory
(PCM), Intel/Micron’s 3D-Xpoint, and memristors have the po-
tential to offer data persistence at unprecedented performance.
They will be added to an already diverse set of storage solu-
tions that differ greatly in performance, cost and endurance
aspects. In this paper, we show how to deal with storage
diversity while meeting performance and cost constraints.

NVMs can be relatively easily incorporated into single-node
designs to provide faster layers of storage, but the current archi-
tecture of cloud computing deployments imposes additional
challenges. These deployments segregate computing from
storage into separate services. Whenever working data needs
to persist, it is flushed from virtual machines running on com-
pute nodes into a storage service, which is typically slow due
to network and software overheads. Additionally, cloud work-
loads commonly require high availability and fault tolerance
from the infrastructure, resulting in replication of data across
multiple independent nodes to protect against hardware and

software failures. For these reasons, we study the deployment
of NVM in datacenters as a fast and replicated cache storage
layer between compute and storage services. Although, our
techniques are relevant to systems that may use NVM as the
storage technology.

Each NVM technology has distinct characteristics that can
be used to improve cloud services. For example, BBRAM is
non-volatile, has no endurance issues, and performs as well
as DRAM. However, its cost and limited capacity prevent it
from being used as the single storage solution in the datacen-
ter. Another example is PCM, which is expected to be much
denser and to cost significantly less than BBRAM, but suffers
from endurance issues and is not as fast as BBRAM. Despite
the variety of points in the space, there is no single NVM
technology that is clearly superior to others.

Unfortunately, customers run diverse sets of applications
with different requirements and utility functions. As such, no
single NVM technology is adequate for all workloads that run
in the datacenter. Furtheremore, since such diverse applica-
tions have to be colocated on the same physical nodes, no
single ratio of multiple NVM technologies is right for all the
applications.

We propose to provision datacenter compute nodes with a
hybrid NVM compute-side cache called HNVM. To quantify
the tradeoff between NVM ratios and the resulting perfor-
mance and cost, we design a service-level agreement (SLA)
model centered on request throughput and latency distribu-
tions instead of resources, giving cloud providers more flexi-
bility in delivering the contracted service by adjusting the ratio
of different NVMs.

We use BBRAM and PCM in a hybrid NVM cache case
study. The cache is three-way replicated across different ma-
chines with a master and two slaves. Bare metal machines
are uniform with identical ratios of BBRAM to PCM but
workloads co-located on these machines are allocated dif-
ferent proportions of BBRAM and PCM. We study the be-
havior of various storage intensive workloads under different
BBRAM/PCM scenarios. We develop a profiling-based model
of interference between these workloads to inform the resource
allocation algorithm about the impact of different workload co-
locations. Using these intereference models, we propose a new
scheduling algorithm to help the provider to efficiently colo-
cate applications on shared hardware while meeting individual
SLAs.

We evaluate the proposed design by simulating several stor-



age intensive cloud workloads and demonstrate average cost
savings of 33% for cloud providers while degrading perfor-
mance by only 4% and not violating any SLAs. Compared
with conventional scheduling algorithms, the proposed CostFit
scheduling algorithm reduces a cloud provider’s penalty cost
and operation cost by more than 20%, 50%, and 50% at low,
medium, and high server loads.

2. Background and Motivation
NVM in the cloud. The volatile:non-volatile dichotomy is
starkly evident in today’s cloud services. For example, cloud
compute services like Amazon’s EC2 [2] and Azure Com-
pute [4] are entirely stateless – vis-a-vis, any data stored lo-
cally within the VM is not durable. Applications in the cloud
store state durably via separately run services such as Ama-
zon’s S3 [3], Amazon’s EBS [1] and Azure Storage [5].

The separation of compute and storage services fueled their
growth and helped them scale. For example, statelessness
allowed cloud compute systems to deal with VM failures,
to enable easy migration of VMs and also to help providers
consolidate VMs as they saw fit to reduce costs. Having cloud
storage isolated from these migrations helps storage services
abstract internal hardware and software failures from the rest
of the world and help achieve a singular important goal of
never losing data and making it always available to the outside
world.

This dichotomy, however, creates a challenge for NVM
adoption in the cloud: Non-volatility in a compute VM is not
useful if VMs do not have affinity to local resources. Low-
latency cannot be exploited if NVM is added to the storage
service which can be reached only via several layers of soft-
ware within compute and storage services.

Cloud services must be redesigned to adopt NVM in a
manner such that VMs continue to remain stateless while
storage services are isolated, so that they can deal with failure
internally rather then exposing them to the outside world;
yet, they must expose NVM in a manner such that its low-
latency persistence can be exploited by cloud applications. In
this work, we analyze an architecture that layers NVM as a
replicated, durable and fault-tolerant cache between the cloud
compute and storage services.

NVM programming and replication. NVM program-
ming libraries provide a memory management interface along
with semantics that enable programmers to perform byte-
addressable and transactional (Atomicity, Consistency, Iso-
lation and Durability, or ACID) updates to NVM. Intel’s per-
sistent memory library, libpmem [14], is one such library, and
has recently been getting traction. It provides useful APIs for
applications to use persistent memory. We used a modified
version of libpmem to implement HNVM.

The modifications were necessary to ensure that each ACID
transaction is replicated for fault-tolerance. Describing them
in detail is out of the scope of this paper, but the replication
is performed using a master-slave mechanism over a RoCE

(RDMA over Converged Ethernet) network. Unlike tradi-
tional cloud storage, we expose a byte-addressable interface
that allows libpmem efficient access to NVM while only the
transaction records of a sequence of modified objects to be
replicated at commit time.

Furthermore, cold data is automatically written to a back-
end cloud storage service to reduce the cost of replication –
three copies of data in NVM is more expensive than storing
data in a replicated cloud storage based on SSDs/HDDs, there-
fore the replicated NVM tier is used as a cache. This paper
focuses on provisioning the NVM required for this cache in
the light of imminent NVM diversity.

NVM Diversity Non-volatile memory technologies have
matured and are predicted to bring persistence close to the
CPU with dramatic improvements in latency [6]. Emerging
technologies, such as phase change memory [28, 33], mem-
ristors [38], and spin-transfer torque [17, 12, 26] are other
promising candidates.

However, some of these technologies have endurance issues
and bringing them to market in large volume at low price is still
challenging. Prior work on using inexpensive uninterrupted
power supply systems to implement battery-backed DRAM
(BBRAM) [16] provides non-volatile memory at the speed
of DRAM, but has the same capacity and cost concerns as
DRAM. However, DRAM has no endurance issues. Table 1
shows the trade-offs between them [39]. Hybrid approaches
combine these technologies to obtain ”the best of both worlds”.
However, such an approach is fundamentally different from
layering volatile DRAM on top of NVM or layering NVM on
top of SSDs as Section 3 will discuss.

3. Hybrid NVM in the Cloud
This paper proposes using two different kinds of byte-
addressable persistent memories in combination. One of them,
though of smaller capacity, provides higher performance and
endurance (fastNVM, e.g. battery-backed DRAM). The other
one is based largely on Intel and Micron’s 3Xpoint memory
but could be any of the alternative memory technologies under
development (slowNVM).

This is fundamentally different from tiering volatile DRAM
on top of NVM or tiering NVM on top of SSDs. When using
volatile DRAM as a cache for NVM, only reads can be accel-
erated; writes must still reach NVM. When using SSDs as a
secondary non-volatile tier, the interface is block oriented and
requires a different kind of data management mechanism that
may not be relevant for byte-addressable devices. What makes
tiering fastNVM on top of slowNVM uniquely challenging is
that both are byte-addressable and both are persistent.

More specifically, the actual regions of the memories mod-
ified for a given transactional application is fundamentally
different when both the tiers are byte-addressable and persis-
tent. This is due to the fact that data can be persistently updated
in the fast tier and that the data structures are optimized for
byte-addressability unlike when using SSDs. Furthermore, to
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Technology Scaling (not charge based) Endurance Latency Capacity Cost Commercially Available Category
PCM Yes 106−108 100s of ns <1TB/server $2-8/GB Yes Slow

3D-XPoint Yes 106−108 100s of ns <1TB/server $2-8/GB Yes Slow
Memristor Yes 1011−1012 10s of ns <1TB/server Potentially lower than NAND No Fast
STT-RAM Yes >1012 10s of ns <1TB/server Highest No Fast

Battery-backed DRAM No 1016 10s of ns <0.5TB/server $12/GB Yes Fast

Table 1: NVM Technologies

the extent of our knowledge, this is the first paper to analyze
how durable transactions that leverage byte-addressability ex-
ecute at an instruction level. The primary difference being
that durable transactions need to create durable log entries to
ensure atomicity and consistency of the data.

Crucially, the challenges for the cloud provider hosting mul-
tiple guests each wanting to tier fastNVM over slowNVM have
not been addressed. In this paper, we present a scheduling
mechanism that the cloud provider can use to allocate fast-
NVM and slowNVM resources to customers co-located on
shared hardware such that the overall performance increases
and the wear reduces on the slowNVM.

Current storage service-level agreements (SLAs) specify
minimum bandwidth and/or page-granular IOPS guarantees
based on SSDs. However, the benefit of HNVM is to provide
a much lower latency service on small granular accesses based
on NVMs. As such, we add both average and tail (95% per-
centile) storage operation access latencies to HNVM’s SLA
for requests of various sizes. Given a workload profile, our
scheduler profiles average and tail latencies for various config-
urations and suggests the configuration that is optimal from
the cost perspective while meeting SLAs.

Finally, we design a workload placement algorithm that
avoids SLA violation penalty costs by determining optimal
proportions of different NVMs to serve different workloads,
mapping them onto servers with fixed resources, and model
how sharing of resources across workloads impacts laten-
cies negatively. The placement algorithm extrapolates from
workload profiles to simulate how a given combination of
workloads would interfere with each other, and uses this in-
formation to inform the cloud provider about potential SLA
violations.

4. Hybrid NVM Cloud Design

We first describe resources available within a single server,
and how VMs are layered on top of servers. We then introduce
a cost and resource constraints model to formally specify the
workload placement problem. Finally, we present a heuristic
that uses workload profiling information to predict sharing
behavior of co-located workloads and minimize penalty costs.

4.1. Hybrid NVM in Single Server

As explained in Section 2, NVM is added to compute nodes
and a storage cache is implemented on top of it. In our pro-
posal, this NVM is a hybrid between a fastNVM (battery-
backed DRAM) and a slowNVM (3D-Xpoint).

Each server has a fixed amount of fastNVM and slowNVM.
However, customers receive different number of VMs across
various servers with different ratios of slowNVM and fast-

NVM depending on their agreed-upon SLAs and workloads.
For each instance of our accelerated storage service, two addi-
tional VMs are instantiated to serve as replicas, which use a
fast RDMA network to communicate with the master.

The two NVMs are laid out as a flat memory with system
support, hot (most frequently accessed) and highly-written
data is stored in the fastNVM to enable faster access and
reduce wear of the slowNVM. In today’s systems, this support
can be implemented by monitoring access and dirty bits in the
page table over epochs and moving items appropriately at the
beginning of each epoch. Alternatively, we can have a page
ranking and migration mechanism in hardware [35, 34].

We have instrumented our compute-side cache running
YCSB, a suite of key-value store workloads, and corrobo-
rated prior results showing that a small number of pages count
for most memory accesses. For example, one YCSB workload
of one million operations with uniformly random key access
and 1KB value size (for a total of over 1GB of data) has 75%
of its page accesses in the hottest 100MB of memory (we use
this ratio in the results presented in Section 6). If the key
accesses follow a more likely Ziphian distribution, over 90%
of the page accesses hit in the hottest 100MB. This is due
to the cache being implemented as a B-tree and values being
stored at their leaves. There is still significant data locality as
the data structure branches are traversed.

4.2. Optimizing fastNVM and slowNVM Ratio for a Sin-
gle Workload

Figure 1 shows optimal fastNVM/slowNVM ratios for dif-
ferent target average and tail latencies. The evaluated three
workloads (workload_a, workload_b, and workload_f) have to-
tally different fastNVM ratio vs. latencies profile. This implies
different applications require different amounts of fastNVM
in order to guarantee SLAs.

In order to guarantee storage service-level agreements, a dy-
namic resource allocation algorithm is developed to adjust the
ratio of data in fastNVM and slowNVM during program run-
time. In this Algorithm 1, n different configurations are avail-
able with increasing ratio of data in fastNVM and slowNVM.
The algorithm gradually increases the fastNVM/slowNVM
ratio if the any of the achieved latencies (average or tail) is
higher than the target one. Otherwise, if the achieved laten-
cies are both some threshold lower than the target latencies,
the algorithm decreases the fastNVM/slowNVM ratio. We
find the optimal thresholds tave and ttail that are small enough
to avoid resource over-provisioning while still big enough to
avoid oscillation.
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Figure 1: Optimal fNVM Ratio for Different Target Latencies (average_tail) a: workload_a; b: workload_b; c: workload_f

Algorithm 1 Find Optimal fastNVM and slowNVM Ratio

Require:
Treal_ave <= Ttarget_ave
Treal_tail <= Ttarget_tail

1: Cn = initializeCon f igurations(n) . Initialize n
configurations.

2: Ccurrent =C0 . Initialize current configuration with least
fastNVM.

3: for every CONFIG cycles do
4: if Treal_ave > Ttarget_ave or Treal_tail > Ttarget_tail then
5: Ccurrent = nextCon f ig() . Find next configuration

with higher fastNVM/slowNVM ratio.
6: else if Treal_ave < tave×Ttarget_ave and Treal_tail < ttail×

Ttarget_tail . Latencies are some threshold lower than
target latencies. then

7: Ccurrent = prevCon f ig() . Find next
configuration with lower fastNVM/slowNVM ratio.

8: end if
9: end for

4.3. Supporting Larger Datasets

For workloads with a dataset larger than a single server’s
memory can cache, two different mechanisms can be used to
provide larger cache space, as shown in Figure 2:
• Data can be sharded into share-nothing partitions across

multiple VMs, each with its own separate replica VMs, as
described in Section 2. This enables a distribution of data
over a large number of machines, with each machine serving
a portion of the data. This technique requires multiple VMs
but it is highly scalable because these VMs need not interact
with each other.
• Remote memory access enables partitioning the data into

multiple servers without creating multiple application VM
instances. RDMA requests are sent directly to the NIC
without involving the kernel and are serviced by the remote
NIC without interrupting the CPU. A memory region is
registered with the NIC by pinning the pages in physical
memory [23].

4.4. NVM-Cache Cost Model

Cloud providers provide worst case guarantees instead of pro-
viding exact ones. The reason for this is that applications

fNVM
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sNVM
<1TB

Server 1

fNVM
<0.5TB

sNVM
<1TB

Server 2

fNVM
<0.5TB

sNVM
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Server 3

Shard Data

Remote Memory

Figure 2: Different Data Placement Mechanisms for Larger
Dataset

spanning multiple VMs typically depend on numerous shared
software and hardware components. When such guarantees
are violated, a provider typically reimburses the customer for
the period of time during which the guarantee was violated.
We propose a similar approach for the distributed cache based
on NVM, but add average and tail latencies (95th percentile)
to the SLA.

In this model, a cloud customer and a cloud provider agree
on a service level agreement (SLA) that defines the desired
performance and the penalty cost for an SLA violation. A
cloud customer picks from a set of SLA profiles that a provider
is willing to offer. There could be multiple levels of SLAs for
key-value stores. The SLA specifies a performance goal in
terms of average latency and tail latency at some percentage
of requests (e.g., 30µs average and 100µs or less for 95%
of requests). In order to enforce the SLA, we also specify
a penalty function p(latency). The first part of p(latency)
proportionally grows with the difference between the achieved
average latency and target average latency. The second part
proportionally grows with the total number of requests that
exceed the 5% of requests that fall outside the 95% latency.
SLA violations may incur revenue loss and should be avoided.

The purpose of the penalty function is to express how much
revenue is lost for a cloud provider because of not abiding by
the SLA. Average latency and tail latency need to be penal-
ized differently, as average latency affects application overall
experience while tail latency affects customers’ tolerance to
extreme cases. We define Penalty Cost in Equation 1, where
Treal_ave is the achieved average latency while Ttarget_ave is the
target average latency, and Nreal_tail is the the total number
of requests that fall outside the target tail latency (Ttarget_tail)
while Ntarget_tail is the target number of request (5% of the
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total requests) that fall outside the target tail latency. pave(WI)
(dollars per time unit) and ptail(WI) (dollars per request) are
unit penalty costs in terms of workload write density. As
write intensive workloads are intrinsically harder to guarantee
average latency and tail latency due to network latency and
network performance variation, we set unit penalty differently
based on workload write intensity.

PenaltyCost = (Treal_ave−Ttarget_ave)× pave(WI)

+(Nreal_tail −Ntarget_tail)× ptail(WI)
(1)

A resource bundle Ri = [ri1,ri2,ri3, . . . ,rin] describes
workloadi’s (Wi) resource requirements on n types of re-
sources. For HNVM, Ri = [ricpu,ri f nvm,risnvm] is Wi’s resource

requirements on three major resources. R =


R1
R2
. . .
RN

 is a re-

source matrix for N workloads running across a datacenter.
The resources, however, are constrained by what each server

can provide. Each server has only limited hardware resources,
such as memory capacity. Thus, each server can support a
certain number of workloads. A workload placement vector
pi = [ei1,ei2,ei3, . . . ,eiN ] defines if a workload runs on server
i. For instance, a value of 1 for ei1 means W1 runs on server i.
If there are M servers in the datacenter, a workload placement

matrix P =


p1
p2
. . .
pM

= [e1,e2, . . . ,ex] describes how workloads

are placed on x servers. In this matrix, workload placement
vector ei contains only standard basis of Rx if Wi runs on a

single server (e.g.,

1
0
0

 means the workload runs on server 1

only). If Wi requires more resources than a single server can
provide, we shard the keys with consistent hashing [25] and

place the workload on multiple servers (e.g.,

1
1
0

 means the

workload runs on server 1 and server 2 with resources evenly
distributed).

A resource matrix C describes how much resource is con-
sumed on each server, C = PR, where P is a matrix of dimen-
sions MxN where pi j indicates whether a particular workload
j out of N has been placed in server i out of M and R is a
matrix of dimension NxK where r jk indicates the resource
requirement of workload j on resource k.

The problem is to minimize cloud provider’s global cost,
where cost consists of penalty cost and server operation cost.
s.t. Cicpu ≤ S(cpu),Ci f nvm ≤ S( f nvm),Cisnvm ≤ S(snvm), for
all server i in M servers, where S is the total resource capacity
on a single server. The problem becomes very similar to a con-
ventional bin-packing problem. However, here we minimize
cost, instead of number of used bins.

4.5. Workload Placement and Scheduling

The placement algorithm should figure out the best workload
placement and scheduling strategy to minimize global cost,
as described in section 4.4. While servers have homogeneous
hardware configuration with a fixed fastNVM/slowNVM ratio,
workloads may use different fastNVM/slowNVM ratios indi-
vidually. This requires the workload placement algorithm to
be aware of server load and how the behaviors of workloads
change when resources are shared.

In order to place an incoming workload, the algorithm re-
quires two types of information to guarantee SLA while mini-
mizing cost. First, how does the workload’s performance react
to the reserved resources (e.g. number of cores, memory
capacities, etc.)? Reserve resources are such pre-allocated and
isolated in current cloud model. Second, how the workload
changes its performance profile in face of sharing best-effort
resources, such as network bandwidth and memory band-
width contention. Best-effort resources are not provisioned
proportional to the payment, thus creating more uncertainty in
performance. We propose a HNVM scheduling algorithm to
address the above questions.
4.5.1. Profile Workload characteristics can change over time,
which can be caused by changes in request rate, request size,
request ratio (read/write), etc. In order to address workload
characteristic change, we construct a performance profile and
define different SLAs for different workload characteristics.
The profiler sweeps inputs from all customers with varying
request sizes, request rates, and read/write ratios, and creates
a single model that will work for any customer before the
entire key-value services starts operating. Then the pro-
filer recommends possible SLAs between the customer and
provider. The cloud provider offers a series of SLAs, each
with a particular range of request rates and other workload
characteristics, and each for a different price. The customer
chooses a SLA based on its workload characteristics. If the
client’s workload deviates from the contracted SLA, then the
cloud provider is not responsible to SLA violations.

The profile maps available best-effort resource (network
bandwidth and memory bandwidth) to achievable operation
latency range. A operation latency range contains an array
of achievable average latencies and tail latencies by varying
fastNVM and slowNVM ratios. A practical performance range
can save five performance points from five different fastNVM
and slowNVM ratios. A workload profile can save perfor-
mance ranges for four network bandwidths(10Gbps, 20Gbps,
30Gbps, and 40Gbps) and four memory bandwidths (8GB/s,
12GB/s, and 24GB/s, 48GB/s). The profile can be less than
5KB in size.

In many cases, only one of the best-effort resources becomes
a bottleneck and has a dominating affects on performance. To
save profiling time, the profiler can store the sensitivity curve
of average latency and tail latency to memory bandwidth, in-
dicating how the workload performance reacts to memory
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bandwidth change when network bandwidth is not a bottle-
neck. Similarly, the profiler constructs a network bandwidth
sensitivity curve with full memory bandwidth. With these
two curves, the scheduler can predict workload performance
when it is co-scheduled with another workload. The avail-
able memory bandwidth and network bandwidth on the server
indicates which resource is more critical for the new work-
load. Therefore, the sensitivity curve of the critical resource
can by applied to predict the new workload’s performance.
According to our results, network bandwidth is more critical
to write-intensive workloads, and memory bandwidth affects
more read-intensive workloads. Performance is very sensi-
tive to the bandwidth when the available bandwidth is less
than the required bandwidth of the workload (request rate is
high). Both average latency and tail latency increases sharply
if bandwidth is further reduced.
4.5.2. Workload Characterization and Scheduling When
scheduling a workload, the scheduler first characterizes the
incoming workload in order to generate the correct perfor-
mance profile. In order to characterize a workload, an empty
server that runs a local monitor is always reserved. The per-
formance profile is searched with the generated signature of
the workload (request rate, request size, and request ratio).
The workload profile contains a full mapping of network band-
widths and memory bandwidths to performance ranges. If the
workload profile is not cached in the profile, a new workload
profile is constructed and inserted.

Figure 3 shows a high-level work flow of the proposed
scheduling algorithm. At first, two empty servers characterize
two VMs (VM5 and VM6) concurrently. After characteriza-
tion, the local monitor sends the workload signature (request
rate, request size, and request ratio) to the scheduler. If the
workload profile is cached in the performance profile, the
scheduler determines where to place the workload directly.
Otherwise, the scheduler returns a NOT CACHED signal to
the local monitor. The local monitor start evaluating perfor-
mance ranges with different network bandwidths and memory
bandwidths and inserts the profile to the global profile.

The scheduler analyzes global resource availability and de-
termines whether to migrate the workload to an non-empty
server. The scheduler contains a table of global resource avail-
ability (free fastNVM capacity, free slowNVM capacity, net-
work bandwidth, and memory bandwidth) on a per server basis.
By mapping any server’s available network bandwidth and
memory bandwidth to the workload’s profile, the scheduler
finds the performance range. The optimal fNVM/sNVM ratio
is determined by the performance range. Finally, the scheduler
migrates VM5 to an occupied server as co-scheduling VM1
and VM5 reduces the global cost. In contrast, VM6 stays on
the original server as co-scheduling VM6 with any existing
VM increases the global cost. The server where VM6 runs
becomes an occupied server.

Different from previous work such as Bubble-up [30] and
Bubble-flux [40], HNVM schedules multiple latency-sensitive
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HNVM	  
Local	  

Monitor	  
VM6	  

HNVM	  
Local	  

Monitor	  

HNVM	  Scheduler	  	  

VM5	  VM1	   VM2	   VM4	  VM3	  

2.	  Ini3ate	  	  
Migra3on	  

Empty	  Servers	  

Occupied	  Servers	  

Performance	  
Profile	  

1.	  Signature	   3.	  VM	  	  
Migra3on	  

Figure 3: HNVM Scheduler. HNVM local monitor characterizes
the incoming workload and sends the signature to the sched-
uler. The scheduler determines workload performance range
by either reading from the performance profile or asking the lo-
cal monitor to construct a new profile. The scheduler migrates
a workload if co-scheduling reduces global cost.

workloads (key-value stores) by proactively predicting and
avoiding contention created by best-effort resources. The
HNVM Profiler relies on a rate-limiting hardware/software
to create a tunable amount of “pressure” on memory system
and network stack. Hardware memory traffic shaping [46]
can be applied to adjust memory bandwidth on a per-core/per-
application basis. Similarly, network interface cards limit
network bandwidth for certain channels.
4.5.3. Cost Aware Scheduling We propose a cost-aware
scheduler, the HNVM scheduler, that minimizes cloud
provider’s global cost. Workload consolidation reduces servers
in operation by scheduling VMs on a single physical server.
However, consolidating workloads creates resource contention,
resulting in SLA violations (penalty cost). To address this
problem, the HNVM scheduler takes workload performance
sensitivity to server load and best-effort resource contention
into account while placing workloads.

A conventional bin-packing algorithm does not take into
account server penalty cost for SLA violations. A random-fit
algorithm randomly picks up a server that provides enough
reserved resources (CPUs and memory capacities) that a work-
load requires. Although efficient, it might not find the optimal
server that minimizes cost. A largest-fit algorithm searches
for a server with maximal available resources, which results
in minimum best-effort resource contention for lower server
workloads at the cost of operating more servers. A best-fit
algorithm tries to find a server with best resource match with
the workload’s reserved resource requirements. For example,
if the workload requires a resource bundle of x CPU cores,
y fast-NVM capacity, and z slow-NVM capacity (x, y, z), a
server with best resource match will have least unused re-
sources; Rover = a|X− x|+b|Y − y|+ c|Z− z|; where X, Y, Z
are the server’s available resources and are greater than x, y,
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z. As different resources have different impact on workload
performance, different weights are used (a, b, and c) in order to
measure the resource match. However, it is not aware of best-
effort resource (memory bandwidth and network bandwidth)
contention created by co-running VMs. This will potentially
cause performance degradation and SLA violations.

The HNVM scheduler uses a cost-aware best-fit scheduling
algorithm that minimizes penalty cost caused by SLA vio-
lations. The scheduler sorts the candidate servers by their
resource availability in decreasing order, favoring servers with
high resource utilization at first. Thus the HNVM scheduler
packs as many workloads as possible on a single server, but
only when the incurred penalty cost is smaller than operation
cost of starting a new server. This allows idle servers to be
turned down or turned off for power savings. The scheduler
predicts the performance impact of the new workload on the
existing workloads. It adds the required resources given by
HNVM Profiler of the new workload to the consumed re-
sources and maps existing workloads’ performance profiles to
the new server load. If the scheduler predicts that the introduc-
tion of the new workload increases the penalty cost to existing
workloads, it starts evaluating the next available server that
best matches the resource requirements of the new workload.
While searching for the next possible server, the scheduler
keeps the smallest penalty cost that has been evaluated so far.
If the minimum penalty cost is smaller than the operation cost
of starting a new server, the scheduler migrates the workload
to the non-empty server that produces the minimum penalty
cost. Otherwise, the scheduler leaves the workload on the
profiling server.

The scheduler fails on scheduling a new workload if there
aren’t enough resources available required by the new work-
load. Admission control does not allow new workloads until
there are enough resources or new servers are added to the
pool. Figure 4 shows an example of scheduling workloads at
different server load levels.

Without losing accuracy, HNVM Profiler saves workload
performance profiles at four available network bandwidth lev-
els (10Gbps, 20Gbps, 30Gbps, and 40Gbps) and three memory
bandwidth levels (4GB/s, 8GB/s, 12GB/s, and 24GB/s). The
HNVM scheduler can map any workload combined with its
fastNVM/slowNVM ratio to any server load level and get the
predicted performance.

Workload characteristics, however, may change dynam-
ically. Our techniques are relevant even when workloads
change dynamically. In the future, we wish to implement
an online performance (latency and bandwidth monitor) mon-
itor such that the system can detect if the application SLAs
are being violated at runtime. If so, we simply move the work-
load back into the scheduler after updating the profile of the
application with the information collected by the monitor at
runtime. We wish to leverage the virtual machine migration
mechanisms that cloud systems use today to ease the imple-
mentation of such a scheduler that adapts to applicaiton needs

1	  

2	  

Server1	   Server2	   Server3	  

1	  

2	  
3	   4	  

5	  
6	  

2	  
3	   4	  

5	  
6	  

7

Low	  Server	  Load	  

Medium	  Server	  Load	  

High	  Server	  Load	  

Pack	  workloads	  on	  servers	  without	  incurring	  penalty	  cost	  	  

Reconfigure	  exis9ng	  VMs	  to	  reduce	  penalty	  cost	  

1	  

Figure 4: HNVM Scheduling at Different Server Loads. 1. Min-
imize servers in operation without incurring SLA violations at
low to medium server load. 2. Minimize penalty cost by ad-
justing existing workloads’ fast-NVM/slow-NVM ratios at high
server load.

Component Cost ($) Description
CPU and
logic

1000–1500 Dual Socket (12 core
each)

Memory 1200–2500 128–256GB
SSD & HDD 700–1200 2–4TB
Network 100–1000 10GigE/RDMA
Other 0–500 power supply, batter-

ies, chassis, etc,.
Total 3000–6000

Table 2: Typical cost of an Open Compute server used by Mi-
crosoft and Facebook datacenters.

dynamically.

5. Experimental Setup
We now describe the experimental setup for evaluating the
HNVM scheduler and demonstrating how it can reduce the
cost for the cloud provider while meeting customer SLAs.

5.1. Hardware Configuration & Cost

Microsoft, Facebook and RackSpace have started using the
Open Compute server specifications [8]. The pooled resources
of these organizations and an open source model for the speci-
fications enables quick innovation and keeps the costs low for
every one because of their combined scale.

We use the Open Compute server specification 2.0 [9] to
price our servers based on component costs from NewEgg [7],
Amazon, and SuperMicro. Table 2 shows the split. We do
note that bulk purchases can reduce the cost by up to 2x as
is typical with consumer vs. bulk pricing. The server cost
estimate (non-bulk estimate) can be $3–6K depending on the
amount of memory and storage. Typically, DRAM’s cost is
33–40% of the total cost.

In our system, each server has dual-socket processors of
16 cores. The system has a 40Gbps RDMA network which
is used to emulate slower networks. Each server has 144GB
of DRAM which is used to emulate both fast-NVM and slow-
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NVM. We price the fast-NVM the same as BBRAM (15%
higher than DRAM [16]) and slow-NVM the same as 3D-
XPoint (10%-20% of DRAM). In our cost model, slow-NVM
costs only 10% of fast-NVMM.
5.1.1. NVM Latency Fast-NVM is based on BBRAM that
costs 10% higher than DRAM in Azure [16]. We scale up
the operation latency distributions measured on a DRAM-
based machine to approximate slow-NVM. The AMAT model
(Average Memory Access Time) is used to scale up DRAM-
based operation latency distributions to distributions with slow-
NVM. In order to measure AMAT, we use an Intel Pin Tool
to generate memory traces for each key-value store operation.
Memory traces are fed into a cache simulator to approximate
cache miss rate to calculate AMAT, which is used to scale up
the latencies appropriately.

We use two different memory latency profiles for slow-
NVM: One with an optimistic read latency of 100ns and write
latency of 300ns (similar to average case in NVMDB [39]),
and one with more pessimistic read latency of 300ns and write
latencies of 1000ns (similar to Mojim [44]). The memory
bandwidth for the slow-NVM is 6GB/s (approximately 1/8 of
DRAM bandwidth) and for the fast-NVM is 48GB/s (assuming
BBRAM).

Overall, the effective latency of hybrid NVM is determined
by the page placement policy that the scheduler employs. A
page miss rate analyzer runs the memory trace to get page miss
rate for a certain sized memory. The analyzer takes a page
policy combined with a memory size and outputs the ratio of
page hits in the memory. With this analysis, we obtain the
ratio of memory accesses in the fast-NVM (e.g.,BBRAM) and
the ratio of memory accesses in the slow-NVM (e.g.,PCM) for
a given fast-NVM/slow-NVM ratio. However, the latency of
remote memory accesses is determined by the network.
5.1.2. Network Latency The default ethernet option in Azure
is 10GigE. The RDMA implementation in Azure [18] pro-
vides a network that is 8–16X faster. Communication over
regular ethernet (10GigE) within compute nodes incurs over
300× lower latency than communication between compute
and storage nodes. Note that cloud providers are unlikely to
adopt RDMA for reaching storage nodes from compute nodes
due to RDMA’s high cost (and storage costs need to be low),
so the performance gap is expected to increase.

Figure 5 shows how datacenters are organized into sepa-
rate compute and storage nodes, and latencies that we have
measured in Azure between these nodes. Our reliable and
replicated NVM cache layer at the compute side can signifi-
cantly reduce the round-trip latency for data that needs to be
persisted.

5.2. Simulation and Workload

We developed a trace-driven simulation and analytical tool
to evaluate the performance and cost tradeoffs of the pro-
posed system, and investigate the implications on workload
placement and scheduling. Five YCSB key-value store work-

Fault	  Domain0	   Fault	  Domain1	   Fault	  Domain2	  

Compute	  Nodes	   Storage	  Nodes	  

RDMA:	  39μs	  (ave)	  	  
	  	  	  	  	  	  42μs	  (tail)	  

Ethernet:	  330μs	  (ave)	  
	  	   	  	  	  430μs	  (tail)	  

	  
	  

Ethernet:	  	  110ms	  (ave)	  
	   	  	  	  	  170ms	  (tail)	  

Figure 5: Operation Latencies With and Without NVM Cache
at Compute Side

YCSB	  Client	  

Redis	  Server	  
Opera3on	  Trace	  

Instrument	  	  
Memory	  Trace	  
rd	  ADDR1	  
wr	  ADDR1	  

…	  

Opera3on	  
Latency	  

Distribu3ons	  
with	  DRAM	  

Key-‐value	  Store	  Server	  	  
With	  Intel	  libpmem	  

CacheSim	   Scale	  Distribu3ons	  
for	  sNVM	  

Kamino	  Sim	  

Parameters	  Genera3on	  	  

Key-‐value	  Store	  Client	  

Figure 6: KaminoSim: Simulation Work Flow
loads are evaluated comprehensively. Figure 6 shows the work
flow of our simulation framework. In order to support trans-
actional thread-safe update to the non-volatile memory, we
implemented our own key-value store database with the sup-
port of the Intel libpmem [14] library. To approximate timing
features of slow NVM technologies, such as PCM, we devel-
oped a statistic-based analytical flow (Parameter Generation in
Figure 6). Finally, a simulation tool Kamino Sim is developed
to explore different NVM hierarchies and datacenter design
tradeoffs.
5.2.1. Key-value Store Operation Traces Key-value store
workload traces are generated by running YCSB [13] on Re-
dis [11]. These five YCSB workloads use a uniform data size
of 1KB. We generate traces of YCSB workloads a, b, c, d, and
f with one million operations each.
5.2.2. Transactional B-tree Implementation In order to sup-
port transactional thread-safe update to the non-volatile mem-
ory, we implement a conventional B-tree structure with Intel
libpem library. Each transaction is performed in a thread-safe
and fail-safe manner via ACID transactions. The B-tree serves
as a database server for the key-value store workloads. This
B-tree is the key-value store that we instrument using the
Intel Pin Tool. We then use the obtained traces to conduct
experiments and drive our analysis.
5.2.3. Operation Latency Distribution In order to measure
operation latency distributions, we run YCSB workload traces
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against the T-tree on a real server machine with 32LB L1,
256KB L2, 10MB L3, and 16GB DRAM. Key-value store
operation (“read”, “insert”, and “update”) latency distributions
are saved in separate histograms of 10000 bins each. These
latency distributions are used for generating latency numbers
in the simulator. The network latency and remote update
latency are measured based on a real implemention of a non-
volatile write-back cache in Microsoft Azure servers.
5.2.4. Monte-Carlo Simulator We developed a Monte-Carlo
Simulator to simulate various system aspects, such as cache
latencies, and memory and network latencies. The simulator
statistically generates operation latencies according to latency
distributions described in section 5.2.3. The memory and
network bandwidths are limited using a simulated rate limiter.

6. Evaluation
We now evaluate the scheduler using various workloads that
are described in the previous section. We first demonstrate
how much the lifetime of slow-NVM can be improved because
of the scheduler.

6.1. HNVM Lifetime Evaluation

When using a slow-NVM subject to wear issues (e.g., PCM),
one of the first design constraints is to provision enough fast-
NVM such that the slow-NVM lasts as long as the server,
typically 3 years. This section explores worst case wear under
various memory performance and network latency character-
istics. We assume a slow-NVM endurance (Nendur) of 106

writes. Note that the write-rate is ultimately determined by
the network bandwidth used (ethernet’s 10Gbps vs. RDMA’s
40Gbps).

We instrument the server responding to the set of YCSB
workloads with a Pin [10] Tool including a cache and hybrid
NVM model to collect the total number of writes to the slow-
NVM. We extract the baseline network latency from a real
Azure cloud setup, as shown in Figure 5, and scale it by the
appropriate factor. We then feed the data, along with the
memory latencies to the Monte-Carlo simulator and derive
the total execution time (Texec). We use the analytical model
in Equation 2 to determine expected lifetime for a particular
memory. If more than one memory type has wear issues, the
minimum lifetime should be used, but this is not the case in
this study.

li f etime =
Size(slow−NV M)

Size(perWrite)× Ns
Texec

×Nendur (2)

We present the expected memory lifetime for the aggregate
of YCSB workloads [13] under different network speeds and
fast-NVM/slow-NVM ratios in Figure 7. The numbers are
for the faster version of the slow-NVM with 300ns writes.
For the same network speed, different fast-NVM/slow-NVM
ratios result in different lifetimes. The lifetimes increase until
the ratio of fast-NVM to slow-NVM becomes 4:1 because
larger fast-NVMs are able to absorb a larger number of hot

accesses. However, beyond a certain point, larger fast-NVMs
stop helping and start taking away space from slow-NVMs
that would have been used for wear leveling. This happens
primarily because the number of writes received by the less
written pages are surprisingly high enough to wear out the
slow-NVM at a faster rate.

For the same fast-NVM/slow-NVM ratio, faster net-
works require higher ratios of slow-NVM to reach the 3-
year server lifetime goal (red line) because increased network
performance also increases the number of writes per unit time.
For different memory latencies, higher latencies slightly in-
crease memory lifetime. This is because a slower memory
means a lower number of writes per time unit. This effect is
stronger for configurations with a higher ratio of slow-NVM
because more requests are directed toward slow-NVM in such
configurations. Overall, to maintain a 3-year server lifetime
goal at low network latencies, cloud providers need about
10% fast-NVM when using a slow-NVM with write latency of
300ns, and 4% fast-NVM when using a slow-NVM with write
latency of 1000ns.

6.2. Optimal Server Hardware

The server lifetime study above has allowed us to determine
minimum amounts of fast-NVM in different scenarios, provid-
ing bounds on practical fast-NVM/slow-NVM ratios. Next,
we turn our attention to determine the uniform server configu-
ration that optimizes performance and cost, based on the set
of workloads to be served.

In Figure 8, performance is measured as the aggregate num-
ber of requests per second serviced by a saturated server in that
configuration (i.e., adding more threads to the server brings
no throughput benefit). Cost is the total cost of that server con-
figuration, factoring in different network interface and NVM
prices, as described in Section 5.

Figure 8(a) compares the performance of different work-
loads under a variety of conditions. Workloads with a higher
proportion of writes (a and f) benefit more from improved
network performance and improved slow-NVM performance
due to faster completion of write request replication. In addi-
tion, configurations with proportionally more fast-NVM seem
more attractive. By themselves, these results suggest that the
server configuration should use the fastest network and only
fast-NVM. However, the cost of doing this would be very high.

Figure 8(b) factors cost in, showing performance per cost.
This is the real metric a cloud provider would want to optimize
when choosing equipment to add to a datacenter. Once again,
improved network and memory performance favors workloads
with higher proportion of writes (a and f). However, when
pushed beyond a certain point, the cost of higher performance
parts, both network and memory, becomes too high to justify
the added performance, bringing the performance per cost
metric down. Moreover, performance per cost is always maxi-
mized by hybrid NVM configurations, showing that diversity
of NVM parts in datacenters is advantageous.
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typical Ethernet network speed based on the measurement in Microsoft Azure Servers.
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Figure 8: a. Normalized Performance and b. Normalized Performance Per Cost for Different fast-NVM/slow-NVM Ratios with Three
Network Speeds (1x = Ethernet network, 8x = RDMA network, 16x = 100Gbps network).

Overall, the best performance per cost results from the lower
latency slow-NVM type, 8× network (RDMA) and 4% fast-
NVM. However, based on the analysis in section 6.1, servers
will not last the 3-year target with only 4% fast-NVM, thus
we use the minimum 10% fast-NVM configuration. Note that
servers would also not last the 3-year target with 100% slow-
NVM, so this is not a viable single-NVM choice. Compared
to the other single-NVM choice, 100% fast-NVM, a hybrid
NVM improves performance per cost by 28% for the lower
latency slow-NVM. Breaking this down into performance and
cost, cost is improved by 33%, while performance is degraded
by only 4%, with no violations to the SLA.
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Figure 9: Provider’s Global Cost with Four Scheduling Algo-
rithms under Three Price Models (Normalized to CostFit)

6.3. Placement Algorithm Effectiveness

Once servers have been purchased, a provider’s goal is to mini-
mize penalty costs with that hardware. A corrolary is also true
for first party cloud services run by the cloud provider. Azure
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data centers run several first party cloud services including
Azure Compute, Azure Storage, Azure DocumentDB, SQL
Azure, Azure ML, etc,. It is important for each of these ser-
vices to reduce their total number of occupied servers while
meeting their respective customer demands. Likewise, it is
important for the caching service to use as few servers as pos-
sible for providing VMs with fast storage as a service to the
outside world while using as few Azure resources as possible.

This is accomplished by the proposed cost-aware placement
algorithm, CostFit. We compare the global cost of CostFit
with three other algorithms: RandFit, which allocates a ran-
dom server with enough resources required by the workload;
LargFit, which allocates the server with maximal available
resources, ignoring the workload requirements; and BestFit,
which searches for a server with the best resource match to the
workload requirements.

Global cost consists of operation cost of all power-up
servers and penalty cost for all scheduled VMs. Based on
previous datacenter analysis [15], we compute per-server op-
eration cost on a hourly basis. In this experiment, we use three
sets of unit penalty costs as described in Function 1.

Figure 9 shows global costs for all algorithms under differ-
ent server load conditions with the default server configuration
as determined in Section 6.2. In Price 1, the provider is pe-
nalized more heavily if violating SLAs. In Price 3, powering
a server is relatively much more expensive. Under all server
conditions, CostFit minimizes the global cost. BestFit always
results in worst global cost except in low server utilization
with Price 3, where powering up a server is much more expen-
sive. It is because BestFit lacks the awareness of server load
vs. workload performance. The diminishing available network
bandwidth and memory bandwidth caused by packing more
workloads on a single server degrades workload latencies sig-
nificantly. BestFit cannot predict performance degradation
with best-effort resource contentions. Under higher server
load, LargFit becomes more effective than RandFit and Best-
Fit. It implies that balancing out workloads across multiple
servers is desirable if the scheduler does not understand how
resource sharing and contention affects workload performance.
Only CostFit takes workload penalty costs under different
server loads into account and adjusts VM configurations and
migration strategies according to penalty cost.

7. Related Work
Compute-side SSD caching: Recent work has demonstrated
the usefulness of compute-side SSD caching [19, 20, 24, 27,
31] in cloud environments to reduce the latency between com-
pute and storage nodes. Our paper extends this work by un-
derstanding how hybrid NVMs can be efficiently used to not
only further reduce the latency but also to reduce the cost for
the provider by providing a resource scheduling mechanism
that allocated resources across customers while meeting their
performance goals.

Distributed NVM Systems: Distributed in-memory trans-

actional systems, including FaRM [23, 16], Mojim [44], and
RamCloud [36] have been proposed to provide data consis-
tency, availability and high performance. While all these
designs focus on improving performance and fault tolerance
of a distributed system, NVMCloud extends these works to
leverage two types of NVMs to provide both high perfor-
mance and low cost for both cloud providers and customers. It
also presents plausible solutions for workload placement and
scheduling in a Cloud context.

Utility Based Partitioning and Configuration: Applica-
tion ulitity based cache partitioning [32, 37, 37] and sub-core
configurable processor architecture [45] suggests optimizing
hardware partitions and configurations for different workloads
sharing the same computation substrate. NVMCloud provides
hardware and software mechanisms to configure a combina-
tion of BBRAM and PCM, in order to minimize costs while
guaranteing SLAs.

Datacenter Workload Scheduling and Optimization:
Datacenter workload placement and scheduling [21, 22] that
aims to improve server utilization and QoS have been pro-
posed. Heracles [29], Bubble-up, and Bubble-flux [41] man-
age latency-critical workloads and best-effort workloads by
changing hardware and software isolation mechanisms. These
scheduling algorithms only co-schedule latency-sensitive
workloads with batch workloads. PEGASUS [29] adjusts
server power management to meet global service-level la-
tency objectives that improves energy proportionality of WSC
systems. Lee’s works [43, 42] rethink fairness in computer
architecture and propose elastic fairness to find fair allocation
of pareto efficiency. In complement to existing techniques,
NVMCloud provides SLA guarantees for storage by using a
load-aware and cost-aware scheduler.

8. Conclusion
In this work we proposed using multiple NVM technologies to
build fast and reliable compute side caches to speed up storage
accesses in the cloud. We use a fastNVM in combination with
slowNVM to build such a cache. We find that such an archi-
tecture can scale arbitrarily while providing up to three orders
of magnitude latency reductions over traditional cloud storage.
We also find that only a small fraction (4–10%) of NVM is
required to be the more expensive fastNVM (battery-backed
DRAM)to ensure that the less durable slowNVM (PCM) lasts
as long as the server does for typical cloud storage workloads.
We propose a new resource allocation and scheduling algo-
rithm to use different proportions of NVM while meeting
latency and capacity requirements for co-located applications.
Our proposed design saves providers’ cost by 33%. The pro-
posed scheduling algorithm reduces providers’ total cost by
more than 20%, 50%, and 50% at three server loads.
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