
Deep Reinforcement Learning

via Policy Optimization

John Schulman

July 3, 2017

Introduction

Deep Reinforcement Learning: What to Learn?

I Policies (select next action)

I Value functions (measure goodness of states or state-action pairs)

I Models (predict next states and rewards)

Deep Reinforcement Learning: What to Learn?

I Policies (select next action)

I Value functions (measure goodness of states or state-action pairs)

I Models (predict next states and rewards)

Deep Reinforcement Learning: What to Learn?

I Policies (select next action)

I Value functions (measure goodness of states or state-action pairs)

I Models (predict next states and rewards)

Model Free RL: (Rough) Taxonomy

Policy Optimization Dynamic Programming

DFO / Evolution Policy Gradients Policy Iteration Value Iteration

Actor-Critic
Methods

modified
policy iteration

Q-Learning

Policy Optimization vs Dynamic Programming

I Conceptually . . .

I Policy optimization: optimize what you care about
I Dynamic programming: indirect, exploit the problem structure,

self-consistency

I Empirically . . .

I Policy optimization more versatile, dynamic programming methods more
sample-efficient when they work

I Policy optimization methods more compatible with rich architectures
(including recurrence) which add tasks other than control (auxiliary
objectives), dynamic programming methods more compatible with
exploration and off-policy learning

Policy Optimization vs Dynamic Programming

I Conceptually . . .
I Policy optimization: optimize what you care about

I Dynamic programming: indirect, exploit the problem structure,
self-consistency

I Empirically . . .

I Policy optimization more versatile, dynamic programming methods more
sample-efficient when they work

I Policy optimization methods more compatible with rich architectures
(including recurrence) which add tasks other than control (auxiliary
objectives), dynamic programming methods more compatible with
exploration and off-policy learning

Policy Optimization vs Dynamic Programming

I Conceptually . . .
I Policy optimization: optimize what you care about
I Dynamic programming: indirect, exploit the problem structure,

self-consistency

I Empirically . . .

I Policy optimization more versatile, dynamic programming methods more
sample-efficient when they work

I Policy optimization methods more compatible with rich architectures
(including recurrence) which add tasks other than control (auxiliary
objectives), dynamic programming methods more compatible with
exploration and off-policy learning

Policy Optimization vs Dynamic Programming

I Conceptually . . .
I Policy optimization: optimize what you care about
I Dynamic programming: indirect, exploit the problem structure,

self-consistency

I Empirically . . .

I Policy optimization more versatile, dynamic programming methods more
sample-efficient when they work

I Policy optimization methods more compatible with rich architectures
(including recurrence) which add tasks other than control (auxiliary
objectives), dynamic programming methods more compatible with
exploration and off-policy learning

Policy Optimization vs Dynamic Programming

I Conceptually . . .
I Policy optimization: optimize what you care about
I Dynamic programming: indirect, exploit the problem structure,

self-consistency

I Empirically . . .
I Policy optimization more versatile, dynamic programming methods more

sample-efficient when they work

I Policy optimization methods more compatible with rich architectures
(including recurrence) which add tasks other than control (auxiliary
objectives), dynamic programming methods more compatible with
exploration and off-policy learning

Policy Optimization vs Dynamic Programming

I Conceptually . . .
I Policy optimization: optimize what you care about
I Dynamic programming: indirect, exploit the problem structure,

self-consistency

I Empirically . . .
I Policy optimization more versatile, dynamic programming methods more

sample-efficient when they work
I Policy optimization methods more compatible with rich architectures

(including recurrence) which add tasks other than control (auxiliary
objectives), dynamic programming methods more compatible with
exploration and off-policy learning

Parameterized Policies

I A family of policies indexed by parameter vector θ ∈ Rd

I Deterministic: a = π(s, θ)
I Stochastic: π(a | s, θ)

I Analogous to classification or regression with input s, output a.

I Discrete action space: network outputs vector of probabilities
I Continuous action space: network outputs mean and diagonal covariance of

Gaussian

Parameterized Policies

I A family of policies indexed by parameter vector θ ∈ Rd

I Deterministic: a = π(s, θ)

I Stochastic: π(a | s, θ)

I Analogous to classification or regression with input s, output a.

I Discrete action space: network outputs vector of probabilities
I Continuous action space: network outputs mean and diagonal covariance of

Gaussian

Parameterized Policies

I A family of policies indexed by parameter vector θ ∈ Rd

I Deterministic: a = π(s, θ)
I Stochastic: π(a | s, θ)

I Analogous to classification or regression with input s, output a.

I Discrete action space: network outputs vector of probabilities
I Continuous action space: network outputs mean and diagonal covariance of

Gaussian

Parameterized Policies

I A family of policies indexed by parameter vector θ ∈ Rd

I Deterministic: a = π(s, θ)
I Stochastic: π(a | s, θ)

I Analogous to classification or regression with input s, output a.

I Discrete action space: network outputs vector of probabilities
I Continuous action space: network outputs mean and diagonal covariance of

Gaussian

Parameterized Policies

I A family of policies indexed by parameter vector θ ∈ Rd

I Deterministic: a = π(s, θ)
I Stochastic: π(a | s, θ)

I Analogous to classification or regression with input s, output a.
I Discrete action space: network outputs vector of probabilities

I Continuous action space: network outputs mean and diagonal covariance of
Gaussian

Parameterized Policies

I A family of policies indexed by parameter vector θ ∈ Rd

I Deterministic: a = π(s, θ)
I Stochastic: π(a | s, θ)

I Analogous to classification or regression with input s, output a.
I Discrete action space: network outputs vector of probabilities
I Continuous action space: network outputs mean and diagonal covariance of

Gaussian

Episodic Setting

I In each episode, the initial state is sampled from µ, and the agent acts until
the terminal state is reached. For example:

I Taxi robot reaches its destination (termination = good)
I Waiter robot finishes a shift (fixed time)
I Walking robot falls over (termination = bad)

I Goal: maximize expected return per episode

maximize
π

E [R | π]

Episodic Setting

I In each episode, the initial state is sampled from µ, and the agent acts until
the terminal state is reached. For example:

I Taxi robot reaches its destination (termination = good)

I Waiter robot finishes a shift (fixed time)
I Walking robot falls over (termination = bad)

I Goal: maximize expected return per episode

maximize
π

E [R | π]

Episodic Setting

I In each episode, the initial state is sampled from µ, and the agent acts until
the terminal state is reached. For example:

I Taxi robot reaches its destination (termination = good)
I Waiter robot finishes a shift (fixed time)

I Walking robot falls over (termination = bad)

I Goal: maximize expected return per episode

maximize
π

E [R | π]

Episodic Setting

I In each episode, the initial state is sampled from µ, and the agent acts until
the terminal state is reached. For example:

I Taxi robot reaches its destination (termination = good)
I Waiter robot finishes a shift (fixed time)
I Walking robot falls over (termination = bad)

I Goal: maximize expected return per episode

maximize
π

E [R | π]

Episodic Setting

I In each episode, the initial state is sampled from µ, and the agent acts until
the terminal state is reached. For example:

I Taxi robot reaches its destination (termination = good)
I Waiter robot finishes a shift (fixed time)
I Walking robot falls over (termination = bad)

I Goal: maximize expected return per episode

maximize
π

E [R | π]

Derivative Free Optimization / Evolution

Cross Entropy Method

Initialize µ ∈ Rd , σ ∈ Rd

for iteration = 1, 2, . . . do
Collect n samples of θi ∼ N(µ, diag(σ))
Perform one episode with each θi , obtaining reward Ri

Select the top p% of θ samples (e.g. p = 20), the elite set
Fit a Gaussian distribution, to the elite set, updating µ, σ.

end for
Return the final µ.

Cross Entropy Method

I Sometimes works embarrassingly well

I. Szita and A. Lörincz. “Learning Tetris using the noisy

cross-entropy method”. Neural computation (2006)

Cross Entropy Method

I Sometimes works embarrassingly well

I. Szita and A. Lörincz. “Learning Tetris using the noisy

cross-entropy method”. Neural computation (2006)

Cross Entropy Method

I Sometimes works embarrassingly well

I. Szita and A. Lörincz. “Learning Tetris using the noisy

cross-entropy method”. Neural computation (2006)

Cross Entropy Method

I Sometimes works embarrassingly well

I. Szita and A. Lörincz. “Learning Tetris using the noisy

cross-entropy method”. Neural computation (2006)

Stochastic Gradient Ascent on Distribution

I Let µ define distribution for policy πθ: θ ∼ Pµ(θ)

I Return R depends on policy parameter θ and noise ζ

maximize
µ

Eθ,ζ [R(θ, ζ)]

R is unknown and possibly nondifferentiable

I “Score function” gradient estimator:

∇µEθ,ζ [R(θ, ζ)] = Eθ,ζ [∇µ logPµ(θ)R(θ, ζ)]

≈ 1

N

N∑
i=1

∇µ logPµ(θi)Ri

Stochastic Gradient Ascent on Distribution

I Let µ define distribution for policy πθ: θ ∼ Pµ(θ)

I Return R depends on policy parameter θ and noise ζ

maximize
µ

Eθ,ζ [R(θ, ζ)]

R is unknown and possibly nondifferentiable

I “Score function” gradient estimator:

∇µEθ,ζ [R(θ, ζ)] = Eθ,ζ [∇µ logPµ(θ)R(θ, ζ)]

≈ 1

N

N∑
i=1

∇µ logPµ(θi)Ri

Stochastic Gradient Ascent on Distribution

I Let µ define distribution for policy πθ: θ ∼ Pµ(θ)

I Return R depends on policy parameter θ and noise ζ

maximize
µ

Eθ,ζ [R(θ, ζ)]

R is unknown and possibly nondifferentiable

I “Score function” gradient estimator:

∇µEθ,ζ [R(θ, ζ)] = Eθ,ζ [∇µ logPµ(θ)R(θ, ζ)]

≈ 1

N

N∑
i=1

∇µ logPµ(θi)Ri

Stochastic Gradient Ascent on Distribution

I Compare with cross-entropy method

I Score function grad:

∇µEθ,ζ [R(θ, ζ)] ≈ 1

N

N∑
i=1

∇µ logPµ(θi)Ri

I Cross entropy method:

maximize
µ

1

N

N∑
i=1

logPµ(θi)f (Ri) (cross entropy method)

where f (r) = 1[r above threshold]

Stochastic Gradient Ascent on Distribution

I Compare with cross-entropy method
I Score function grad:

∇µEθ,ζ [R(θ, ζ)] ≈ 1

N

N∑
i=1

∇µ logPµ(θi)Ri

I Cross entropy method:

maximize
µ

1

N

N∑
i=1

logPµ(θi)f (Ri) (cross entropy method)

where f (r) = 1[r above threshold]

Stochastic Gradient Ascent on Distribution

I Compare with cross-entropy method
I Score function grad:

∇µEθ,ζ [R(θ, ζ)] ≈ 1

N

N∑
i=1

∇µ logPµ(θi)Ri

I Cross entropy method:

maximize
µ

1

N

N∑
i=1

logPµ(θi)f (Ri) (cross entropy method)

where f (r) = 1[r above threshold]

Connection to Finite Differences
I Suppose Pµ is Gaussian distribution with mean µ, covariance σ2I

logPµ(θ) = −‖µ− θ‖2/2σ2 + const

∇µ logPµ(θ) = (θ − µ)/σ2

Ri∇µ logPµ(θi) = Ri(θi − µ)/σ2

I Suppose we do antithetic sampling, where we use pairs of samples
θ+ = µ + σz , θ− = µ− σz

1

2

(
R(µ + σz , ζ)∇µ logPµ(θ+) + R(µ− σz , ζ ′)∇µ logPµ(θ−)

)
=

1

σ

(
R(µ + σz , ζ)− R(µ− σz , ζ ′)

)
z

I Using same noise ζ for both evaluations reduces variance

Connection to Finite Differences
I Suppose Pµ is Gaussian distribution with mean µ, covariance σ2I

logPµ(θ) = −‖µ− θ‖2/2σ2 + const

∇µ logPµ(θ) = (θ − µ)/σ2

Ri∇µ logPµ(θi) = Ri(θi − µ)/σ2

I Suppose we do antithetic sampling, where we use pairs of samples
θ+ = µ + σz , θ− = µ− σz

1

2

(
R(µ + σz , ζ)∇µ logPµ(θ+) + R(µ− σz , ζ ′)∇µ logPµ(θ−)

)
=

1

σ

(
R(µ + σz , ζ)− R(µ− σz , ζ ′)

)
z

I Using same noise ζ for both evaluations reduces variance

Connection to Finite Differences
I Suppose Pµ is Gaussian distribution with mean µ, covariance σ2I

logPµ(θ) = −‖µ− θ‖2/2σ2 + const

∇µ logPµ(θ) = (θ − µ)/σ2

Ri∇µ logPµ(θi) = Ri(θi − µ)/σ2

I Suppose we do antithetic sampling, where we use pairs of samples
θ+ = µ + σz , θ− = µ− σz

1

2

(
R(µ + σz , ζ)∇µ logPµ(θ+) + R(µ− σz , ζ ′)∇µ logPµ(θ−)

)
=

1

σ

(
R(µ + σz , ζ)− R(µ− σz , ζ ′)

)
z

I Using same noise ζ for both evaluations reduces variance

Deriving the Score Function Estimator
I “Score function” gradient estimator:

∇µEθ,ζ [R(θ, ζ)] = Eθ,ζ [∇µ logPµ(θ)R(θ, ζ)]

≈ 1

N

N∑
i=1

∇µ logPµ(θi)Ri

I Derive by writing expectation as an integral

∇µ

∫
dµdζ Pµ(θ)R(θ, ζ)

=

∫
dµdζ ∇µPµ(θ)R(θ, ζ)

=

∫
dµdζ Pµ(θ)∇µ logPµ(θ)R(θ, ζ)

= Eθ,ζ [∇µ logPµ(θ)R(θ, ζ)]

Deriving the Score Function Estimator
I “Score function” gradient estimator:

∇µEθ,ζ [R(θ, ζ)] = Eθ,ζ [∇µ logPµ(θ)R(θ, ζ)]

≈ 1

N

N∑
i=1

∇µ logPµ(θi)Ri

I Derive by writing expectation as an integral

∇µ

∫
dµdζ Pµ(θ)R(θ, ζ)

=

∫
dµdζ ∇µPµ(θ)R(θ, ζ)

=

∫
dµdζ Pµ(θ)∇µ logPµ(θ)R(θ, ζ)

= Eθ,ζ [∇µ logPµ(θ)R(θ, ζ)]

Literature on DFO

I Evolution strategies (Rechenberg and Eigen, 1973)

I Simultaneous perturbation stochastic approximation (Spall, 1992)

I Covariance matrix adaptation: popular relative of CEM (Hansen, 2006)

I Reward weighted regression (Peters and Schaal, 2007), PoWER (Kober and
Peters, 2007)

Literature on DFO

I Evolution strategies (Rechenberg and Eigen, 1973)

I Simultaneous perturbation stochastic approximation (Spall, 1992)

I Covariance matrix adaptation: popular relative of CEM (Hansen, 2006)

I Reward weighted regression (Peters and Schaal, 2007), PoWER (Kober and
Peters, 2007)

Literature on DFO

I Evolution strategies (Rechenberg and Eigen, 1973)

I Simultaneous perturbation stochastic approximation (Spall, 1992)

I Covariance matrix adaptation: popular relative of CEM (Hansen, 2006)

I Reward weighted regression (Peters and Schaal, 2007), PoWER (Kober and
Peters, 2007)

Literature on DFO

I Evolution strategies (Rechenberg and Eigen, 1973)

I Simultaneous perturbation stochastic approximation (Spall, 1992)

I Covariance matrix adaptation: popular relative of CEM (Hansen, 2006)

I Reward weighted regression (Peters and Schaal, 2007), PoWER (Kober and
Peters, 2007)

Success Stories

I CMA is very effective for optimizing low-dimensional locomotion controllers

I UT Austin Villa: RoboCup 2012 3D Simulation League Champion

I Evolution Strategies was shown to perform well on Atari, competetive with
policy gradient methods (Salimans et al., 2017)

Success Stories

I CMA is very effective for optimizing low-dimensional locomotion controllers
I UT Austin Villa: RoboCup 2012 3D Simulation League Champion

I Evolution Strategies was shown to perform well on Atari, competetive with
policy gradient methods (Salimans et al., 2017)

Success Stories

I CMA is very effective for optimizing low-dimensional locomotion controllers
I UT Austin Villa: RoboCup 2012 3D Simulation League Champion

I Evolution Strategies was shown to perform well on Atari, competetive with
policy gradient methods (Salimans et al., 2017)

Policy Gradient Methods

Overview

Problem:

maximizeE [R | πθ]

I Here, we’ll use a fixed policy parameter θ (instead of sampling θ ∼ Pµ) and
estimate gradient with respect to θ

I Noise is in action space rather than parameter space

Overview

Problem:

maximizeE [R | πθ]

I Here, we’ll use a fixed policy parameter θ (instead of sampling θ ∼ Pµ) and
estimate gradient with respect to θ

I Noise is in action space rather than parameter space

Overview

Problem:

maximizeE [R | πθ]

Intuitions: collect a bunch of trajectories, and ...

1. Make the good trajectories more probable

2. Make the good actions more probable

3. Push the actions towards better actions

Overview

Problem:

maximizeE [R | πθ]

Intuitions: collect a bunch of trajectories, and ...

1. Make the good trajectories more probable

2. Make the good actions more probable

3. Push the actions towards better actions

Overview

Problem:

maximizeE [R | πθ]

Intuitions: collect a bunch of trajectories, and ...

1. Make the good trajectories more probable

2. Make the good actions more probable

3. Push the actions towards better actions

Score Function Gradient Estimator for Policies
I Now random variable is a whole trajectory
τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT)

∇θEτ [R(τ)] = Eτ [∇θ logP(τ | θ)R(τ)]

I Just need to write out P(τ | θ):

P(τ | θ) = µ(s0)
T−1∏
t=0

[π(at | st , θ)P(st+1, rt | st , at)]

logP(τ | θ) = log µ(s0) +
T−1∑
t=0

[log π(at | st , θ) + logP(st+1, rt | st , at)]

∇θ logP(τ | θ) = ∇θ

T−1∑
t=0

log π(at | st , θ)

∇θEτ [R] = Eτ

[
R∇θ

T−1∑
t=0

log π(at | st , θ)

]

Score Function Gradient Estimator for Policies
I Now random variable is a whole trajectory
τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT)

∇θEτ [R(τ)] = Eτ [∇θ logP(τ | θ)R(τ)]

I Just need to write out P(τ | θ):

P(τ | θ) = µ(s0)
T−1∏
t=0

[π(at | st , θ)P(st+1, rt | st , at)]

logP(τ | θ) = log µ(s0) +
T−1∑
t=0

[log π(at | st , θ) + logP(st+1, rt | st , at)]

∇θ logP(τ | θ) = ∇θ

T−1∑
t=0

log π(at | st , θ)

∇θEτ [R] = Eτ

[
R∇θ

T−1∑
t=0

log π(at | st , θ)

]

Policy Gradient: Use Temporal Structure
I Previous slide:

∇θEτ [R] = Eτ

[(
T−1∑
t=0

rt

)(
T−1∑
t=0

∇θ log π(at | st , θ)

)]

I We can repeat the same argument to derive the gradient estimator for a single reward
term rt′ .

∇θE [rt′] = E

rt′ t′∑
t=0

∇θ log π(at | st , θ)

I Sum this formula over t, we obtain

∇θE [R] = E

T−1∑
t=0

rt′
t′∑
t=0

∇θ log π(at | st , θ)

= E

[
T−1∑
t=0

∇θ log π(at | st , θ)
T−1∑
t′=t

rt′

]

Policy Gradient: Use Temporal Structure
I Previous slide:

∇θEτ [R] = Eτ

[(
T−1∑
t=0

rt

)(
T−1∑
t=0

∇θ log π(at | st , θ)

)]
I We can repeat the same argument to derive the gradient estimator for a single reward

term rt′ .

∇θE [rt′] = E

rt′ t′∑
t=0

∇θ log π(at | st , θ)

I Sum this formula over t, we obtain

∇θE [R] = E

T−1∑
t=0

rt′
t′∑
t=0

∇θ log π(at | st , θ)

= E

[
T−1∑
t=0

∇θ log π(at | st , θ)
T−1∑
t′=t

rt′

]

Policy Gradient: Use Temporal Structure
I Previous slide:

∇θEτ [R] = Eτ

[(
T−1∑
t=0

rt

)(
T−1∑
t=0

∇θ log π(at | st , θ)

)]
I We can repeat the same argument to derive the gradient estimator for a single reward

term rt′ .

∇θE [rt′] = E

rt′ t′∑
t=0

∇θ log π(at | st , θ)

I Sum this formula over t, we obtain

∇θE [R] = E

T−1∑
t=0

rt′
t′∑
t=0

∇θ log π(at | st , θ)

= E

[
T−1∑
t=0

∇θ log π(at | st , θ)
T−1∑
t′=t

rt′

]

Policy Gradient: Introduce Baseline

I Further reduce variance by introducing a baseline b(s)

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

I For any choice of b, gradient estimator is unbiased.

I Near optimal choice is expected return,
b(st) ≈ E [rt + rt+1 + rt+2 + · · ·+ rT−1]

I Interpretation: increase logprob of action at proportionally to how much
returns

∑T−1
t=t′ rt′ are better than expected

Policy Gradient: Introduce Baseline

I Further reduce variance by introducing a baseline b(s)

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

I For any choice of b, gradient estimator is unbiased.

I Near optimal choice is expected return,
b(st) ≈ E [rt + rt+1 + rt+2 + · · ·+ rT−1]

I Interpretation: increase logprob of action at proportionally to how much
returns

∑T−1
t=t′ rt′ are better than expected

Policy Gradient: Introduce Baseline

I Further reduce variance by introducing a baseline b(s)

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

I For any choice of b, gradient estimator is unbiased.

I Near optimal choice is expected return,
b(st) ≈ E [rt + rt+1 + rt+2 + · · ·+ rT−1]

I Interpretation: increase logprob of action at proportionally to how much
returns

∑T−1
t=t′ rt′ are better than expected

Policy Gradient: Introduce Baseline

I Further reduce variance by introducing a baseline b(s)

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

I For any choice of b, gradient estimator is unbiased.

I Near optimal choice is expected return,
b(st) ≈ E [rt + rt+1 + rt+2 + · · ·+ rT−1]

I Interpretation: increase logprob of action at proportionally to how much
returns

∑T−1
t=t′ rt′ are better than expected

Discounts for Variance Reduction

I Introduce discount factor γ, which ignores delayed effects between actions
and rewards

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

γt
′−trt′ − b(st)

)]

I Now, we want b(st) ≈ E
[
rt + γrt+1 + γ2rt+2 + · · ·+ γT−1−trT−1

]
I Write gradient estimator more generally as

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)Ât

]

Ât is the advantage estimate

Discounts for Variance Reduction

I Introduce discount factor γ, which ignores delayed effects between actions
and rewards

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

γt
′−trt′ − b(st)

)]

I Now, we want b(st) ≈ E
[
rt + γrt+1 + γ2rt+2 + · · ·+ γT−1−trT−1

]

I Write gradient estimator more generally as

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)Ât

]

Ât is the advantage estimate

Discounts for Variance Reduction

I Introduce discount factor γ, which ignores delayed effects between actions
and rewards

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t′=t

γt
′−trt′ − b(st)

)]

I Now, we want b(st) ≈ E
[
rt + γrt+1 + γ2rt+2 + · · ·+ γT−1−trT−1

]
I Write gradient estimator more generally as

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)Ât

]

Ât is the advantage estimate

“Vanilla” Policy Gradient Algorithm

Initialize policy parameter θ, baseline b
for iteration=1, 2, . . . do

Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute

the return R̂t =
∑T−1

t′=t γ
t′−trt′ , and

the advantage estimate Ât = R̂t − b(st).
Re-fit the baseline, by minimizing ‖b(st)− Rt‖2,

summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate ĝ ,

which is a sum of terms ∇θ log π(at | st , θ)Ât

end for

Advantage Actor-Critic

I Use neural network that represents policy πθ and value function Vθ
(approximating V πθ)

I Pseudocode

for iteration=1, 2, . . . do
Agent acts for T timesteps (e.g., T = 20),
For each timestep t, compute

R̂t = rt + γrt+1 + · · ·+ γT−t+1rT−1 + γT−tVθ(st)

Ât = R̂t − Vθ(st)

R̂t is target value function, in regression problem
Ât is estimated advantage function

Compute loss gradient g = ∇θ

∑T
t=1

[
− log πθ(at | st)Ât + c(Vθ(s)− R̂t)

2
]

g is plugged into a stochastic gradient ascent algorithm, e.g., Adam.
end for

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, et al. “Asynchronous methods for deep reinforcement learning”. (2016)

Trust Region Policy Optimization

I Motivation: make policy gradients more robust and sample efficient

I Unlike in supervised learning, policy affects distribution of inputs, so a large
bad update can be disastrous

I Makes use of a “surrogate objective” that estimates the performance of the
policy around πold used for sampling

Lπold(π) =
1

N

N∑
i=1

π(ai | si)
πold(ai | si)

Âi (1)

Differentiating this objective gives the policy gradient

I Lπold(π) is only accurate when state distribution of π is close to πold, thus it
makes sense to constrain or penalize the distance DKL [πold ‖ π]

Trust Region Policy Optimization

I Motivation: make policy gradients more robust and sample efficient
I Unlike in supervised learning, policy affects distribution of inputs, so a large

bad update can be disastrous

I Makes use of a “surrogate objective” that estimates the performance of the
policy around πold used for sampling

Lπold(π) =
1

N

N∑
i=1

π(ai | si)
πold(ai | si)

Âi (1)

Differentiating this objective gives the policy gradient

I Lπold(π) is only accurate when state distribution of π is close to πold, thus it
makes sense to constrain or penalize the distance DKL [πold ‖ π]

Trust Region Policy Optimization

I Motivation: make policy gradients more robust and sample efficient
I Unlike in supervised learning, policy affects distribution of inputs, so a large

bad update can be disastrous

I Makes use of a “surrogate objective” that estimates the performance of the
policy around πold used for sampling

Lπold(π) =
1

N

N∑
i=1

π(ai | si)
πold(ai | si)

Âi (1)

Differentiating this objective gives the policy gradient

I Lπold(π) is only accurate when state distribution of π is close to πold, thus it
makes sense to constrain or penalize the distance DKL [πold ‖ π]

Trust Region Policy Optimization

I Motivation: make policy gradients more robust and sample efficient
I Unlike in supervised learning, policy affects distribution of inputs, so a large

bad update can be disastrous

I Makes use of a “surrogate objective” that estimates the performance of the
policy around πold used for sampling

Lπold(π) =
1

N

N∑
i=1

π(ai | si)
πold(ai | si)

Âi (1)

Differentiating this objective gives the policy gradient

I Lπold(π) is only accurate when state distribution of π is close to πold, thus it
makes sense to constrain or penalize the distance DKL [πold ‖ π]

Trust Region Policy Optimization
I Pseudocode:

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps

maximize
θ

N∑
n=1

πθ(an | sn)

πθold(an | sn)
Ân

subject to KLπθold (πθ) ≤ δ

end for

I Can solve constrained optimization problem efficiently by using conjugate
gradient

I Closely related to natural policy gradients (Kakade, 2002), natural actor
critic (Peters and Schaal, 2005), REPS (Peters et al., 2010)

“Proximal” Policy Optimization

I Use penalty instead of constraint

maximize
θ

N∑
n=1

πθ(an | sn)

πθold(an | sn)
Ân − C ·KLπθold (πθ)

I Pseudocode:

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase β. If KL too low, decrease β.

end for

I ≈ same performance as TRPO, but only first-order optimization

Variance Reduction for Policy Gradients

Reward Shaping

Reward Shaping

I Reward shaping: δ(s, a, s ′) = r(s, a, s ′) + γΦ(s ′)− Φ(s) for arbitrary
“potential” Φ

I Theorem: δ admits the same optimal policies as r .1

I Proof sketch: suppose Q∗ satisfies Bellman equation (T Q = Q). If we
transform r → δ, policy’s value function satisfies Q̃(s, a) = Q∗(s, a)− Φ(s)

I Q∗ satisfies Bellman equation ⇒ Q̃ also satisfies Bellman equation

1A. Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and application to reward shaping”. ICML. 1999.

Reward Shaping

I Reward shaping: δ(s, a, s ′) = r(s, a, s ′) + γΦ(s ′)− Φ(s) for arbitrary
“potential” Φ

I Theorem: δ admits the same optimal policies as r .1

I Proof sketch: suppose Q∗ satisfies Bellman equation (T Q = Q). If we
transform r → δ, policy’s value function satisfies Q̃(s, a) = Q∗(s, a)− Φ(s)

I Q∗ satisfies Bellman equation ⇒ Q̃ also satisfies Bellman equation

1A. Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and application to reward shaping”. ICML. 1999.

Reward Shaping

I Reward shaping: δ(s, a, s ′) = r(s, a, s ′) + γΦ(s ′)− Φ(s) for arbitrary
“potential” Φ

I Theorem: δ admits the same optimal policies as r .1

I Proof sketch: suppose Q∗ satisfies Bellman equation (T Q = Q). If we
transform r → δ, policy’s value function satisfies Q̃(s, a) = Q∗(s, a)− Φ(s)

I Q∗ satisfies Bellman equation ⇒ Q̃ also satisfies Bellman equation

1A. Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and application to reward shaping”. ICML. 1999.

Reward Shaping

I Reward shaping: δ(s, a, s ′) = r(s, a, s ′) + γΦ(s ′)− Φ(s) for arbitrary
“potential” Φ

I Theorem: δ admits the same optimal policies as r .1

I Proof sketch: suppose Q∗ satisfies Bellman equation (T Q = Q). If we
transform r → δ, policy’s value function satisfies Q̃(s, a) = Q∗(s, a)− Φ(s)

I Q∗ satisfies Bellman equation ⇒ Q̃ also satisfies Bellman equation

1A. Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and application to reward shaping”. ICML. 1999.

Reward Shaping
I Theorem: δ admits the same optimal policies as R. A. Y. Ng, D. Harada, and S. Russell.

“Policy invariance under reward transformations: Theory and application to reward
shaping”. ICML. 1999

I Alternative proof: advantage function is invariant. Let’s look at effect on V π and Qπ:

E
[
δ0 + γδ1 + γ2δ2 + . . .

]
= E

[
(r0 + γΦ(s1)− Φ(s0)) + γ(r1 + γΦ(s2)− Φ(s1)) + γ2(r2 + γΦ(s3)− Φ(s2)) + . . .

]
= E

[
r0 + γr1 + γ2r2 + · · · − Φ(s0)

]
Thus,

Ṽ π(s) = V π(s)− Φ(s)

Q̃π(s) = Qπ(s, a)− Φ(s)

Ãπ(s) = Aπ(s, a)

Aπ(s, π(s)) = 0 at all states ⇒ π is optimal

Reward Shaping
I Theorem: δ admits the same optimal policies as R. A. Y. Ng, D. Harada, and S. Russell.

“Policy invariance under reward transformations: Theory and application to reward
shaping”. ICML. 1999

I Alternative proof: advantage function is invariant. Let’s look at effect on V π and Qπ:

E
[
δ0 + γδ1 + γ2δ2 + . . .

]
= E

[
(r0 + γΦ(s1)− Φ(s0)) + γ(r1 + γΦ(s2)− Φ(s1)) + γ2(r2 + γΦ(s3)− Φ(s2)) + . . .

]
= E

[
r0 + γr1 + γ2r2 + · · · − Φ(s0)

]
Thus,

Ṽ π(s) = V π(s)− Φ(s)

Q̃π(s) = Qπ(s, a)− Φ(s)

Ãπ(s) = Aπ(s, a)

Aπ(s, π(s)) = 0 at all states ⇒ π is optimal

Reward Shaping and Problem Difficulty

I Shape with Φ = V ∗ ⇒ problem is solved in one step of value iteration

I Shaping leaves policy gradient invariant (and just adds baseline to estimator)

E
[
∇θ log πθ(a0 | s0)(r0 + γΦ(s1)− Φ(s0)) + γ(r1 + γΦ(s2)− Φ(s1))

+ γ2(r2 + γΦ(s3)− Φ(s2)) + . . .
]

= E
[
∇θ log πθ(a0 | s0)(r0 + γr1 + γ2r2 + · · · − Φ(s0))

]
= E

[
∇θ log πθ(a0 | s0)(r0 + γr1 + γ2r2 + . . .)

]

Reward Shaping and Problem Difficulty

I Shape with Φ = V ∗ ⇒ problem is solved in one step of value iteration

I Shaping leaves policy gradient invariant (and just adds baseline to estimator)

E
[
∇θ log πθ(a0 | s0)(r0 + γΦ(s1)− Φ(s0)) + γ(r1 + γΦ(s2)− Φ(s1))

+ γ2(r2 + γΦ(s3)− Φ(s2)) + . . .
]

= E
[
∇θ log πθ(a0 | s0)(r0 + γr1 + γ2r2 + · · · − Φ(s0))

]
= E

[
∇θ log πθ(a0 | s0)(r0 + γr1 + γ2r2 + . . .)

]

Reward Shaping and Policy Gradients

I First note connection between shaped reward and advantage function:

Es1 [r0 + γV π(s1)− V π(s0) | s0 = s, a0 = a] = Aπ(s, a)

Now considering the policy gradient and ignoring all but first shaped reward (i.e., pretend
γ = 0 after shaping) we get

E

[∑
t

∇θ log πθ(at | st)δt

]
= E

[∑
t

∇θ log πθ(at | st)(rt + γV π(st+1)− V π(st))

]

= E

[∑
t

∇θ log πθ(at | st)Aπ(st , at)

]

Reward Shaping and Policy Gradients
I Compromise: use more aggressive discount γλ, with λ ∈ (0, 1): called

generalized advantage estimation∑
t

∇θ log πθ(at | st)
∞∑
k=0

(γλ)kδt+k

I Or alternatively, use hard cutoff as in A3C

∑
t

∇θ log πθ(at | st)
n−1∑
k=0

γkδt+k

=
∑
t

∇θ log πθ(at | st)

(
n−1∑
k=0

γkrt+k + γnΦ(st+n)− Φ(st)

)

Reward Shaping and Policy Gradients
I Compromise: use more aggressive discount γλ, with λ ∈ (0, 1): called

generalized advantage estimation∑
t

∇θ log πθ(at | st)
∞∑
k=0

(γλ)kδt+k

I Or alternatively, use hard cutoff as in A3C

∑
t

∇θ log πθ(at | st)
n−1∑
k=0

γkδt+k

=
∑
t

∇θ log πθ(at | st)

(
n−1∑
k=0

γkrt+k + γnΦ(st+n)− Φ(st)

)

Reward Shaping—Summary

I Reward shaping transformation leaves policy gradient and optimal policy
invariant

I Shaping with Φ ≈ V π makes consequences of actions more immediate

I Shaping, and then ignoring all but first term, gives policy gradient

Reward Shaping—Summary

I Reward shaping transformation leaves policy gradient and optimal policy
invariant

I Shaping with Φ ≈ V π makes consequences of actions more immediate

I Shaping, and then ignoring all but first term, gives policy gradient

Reward Shaping—Summary

I Reward shaping transformation leaves policy gradient and optimal policy
invariant

I Shaping with Φ ≈ V π makes consequences of actions more immediate

I Shaping, and then ignoring all but first term, gives policy gradient

Aside: Reward Shaping is Crucial in Practice
I I. Mordatch, E. Todorov, and Z. Popović. “Discovery of complex behaviors through

contact-invariant optimization”. ACM Transactions on Graphics (TOG) 31.4 (2012),
p. 43

I Y. Tassa, T. Erez, and E. Todorov. “Synthesis and stabilization of complex behaviors
through online trajectory optimization”. Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE. 2012, pp. 4906–4913

Aside: Reward Shaping is Crucial in Practice
I I. Mordatch, E. Todorov, and Z. Popović. “Discovery of complex behaviors through

contact-invariant optimization”. ACM Transactions on Graphics (TOG) 31.4 (2012),
p. 43

I Y. Tassa, T. Erez, and E. Todorov. “Synthesis and stabilization of complex behaviors
through online trajectory optimization”. Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE. 2012, pp. 4906–4913

Choosing parameters γ, λ

Performance as γ, λ are varied

0 100 200 300 400 500

number of policy iterations

2.5

2.0

1.5

1.0

0.5

0.0

co
st

3D Biped

γ=0.96,λ=0.96

γ=0.98,λ=0.96

γ=0.99,λ=0.96

γ=0.995,λ=0.92

γ=0.995,λ=0.96

γ=0.995,λ=0.98

γ=0.995,λ=0.99

γ=0.995,λ=1.0

γ=1,λ=0.96

γ=1, No value fn

(Generalized Advantage Estimation for Policy Gradients, S. et al., ICLR 2016)

Pathwise Derivative Methods

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

θ

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute ∇θE [RT]. We’ll use ∇θ log π(at | st ; θ)

I Reparameterize: at = π(st , zt ; θ). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Deriving the Policy Gradient, Reparameterized
I Episodic MDP:

θ

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute ∇θE [RT]. We’ll use ∇θ log π(at | st ; θ)
I Reparameterize: at = π(st , zt ; θ). zt is noise from fixed distribution.

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

Deriving the Policy Gradient, Reparameterized
I Episodic MDP:

θ

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute ∇θE [RT]. We’ll use ∇θ log π(at | st ; θ)
I Reparameterize: at = π(st , zt ; θ). zt is noise from fixed distribution.

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

dθ
E [RT] = E

[
T∑
t=1

dRT

dat

dat
dθ

]
= E

[
T∑
t=1

d

dat
E [RT | at]

dat
dθ

]

= E

[
T∑
t=1

dQ(st , at)

dat

dat
dθ

]
= E

[
T∑
t=1

d

dθ
Q(st , π(st , zt ; θ))

]

SVG(0) Algorithm

I Learn Qφ to approximate Qπ,γ, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy πθ to collect T timesteps of data
Update πθ using g ∝ ∇θ

∑T
t=1Q(st , π(st , zt ; θ))

Update Qφ using g ∝ ∇φ

∑T
t=1(Qφ(st , at)− Q̂t)

2, e.g. with TD(λ)
end for

N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, et al. “Learning Continuous Control Policies by Stochastic Value Gradients”. arXiv
preprint arXiv:1510.09142 (2015)

SVG(0) Algorithm

I Learn Qφ to approximate Qπ,γ, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy πθ to collect T timesteps of data
Update πθ using g ∝ ∇θ

∑T
t=1Q(st , π(st , zt ; θ))

Update Qφ using g ∝ ∇φ

∑T
t=1(Qφ(st , at)− Q̂t)

2, e.g. with TD(λ)
end for

N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, et al. “Learning Continuous Control Policies by Stochastic Value Gradients”. arXiv
preprint arXiv:1510.09142 (2015)

SVG(1) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Instead of learning Q, we learn

I State-value function V ≈ V π,γ

I Dynamics model f , approximating st+1 = f (st , at) + ζt

I Given transition (st , at , st+1), infer ζt = st+1 − f (st , at)

I Q(st , at) = E [rt + γV (st+1)] = E [rt + γV (f (st , at) + ζt)], and at = π(st , θ, ζt)

SVG(1) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Instead of learning Q, we learn

I State-value function V ≈ V π,γ

I Dynamics model f , approximating st+1 = f (st , at) + ζt

I Given transition (st , at , st+1), infer ζt = st+1 − f (st , at)

I Q(st , at) = E [rt + γV (st+1)] = E [rt + γV (f (st , at) + ζt)], and at = π(st , θ, ζt)

SVG(1) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Instead of learning Q, we learn

I State-value function V ≈ V π,γ

I Dynamics model f , approximating st+1 = f (st , at) + ζt

I Given transition (st , at , st+1), infer ζt = st+1 − f (st , at)

I Q(st , at) = E [rt + γV (st+1)] = E [rt + γV (f (st , at) + ζt)], and at = π(st , θ, ζt)

SVG(1) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Instead of learning Q, we learn

I State-value function V ≈ V π,γ

I Dynamics model f , approximating st+1 = f (st , at) + ζt

I Given transition (st , at , st+1), infer ζt = st+1 − f (st , at)

I Q(st , at) = E [rt + γV (st+1)] = E [rt + γV (f (st , at) + ζt)], and at = π(st , θ, ζt)

SVG(1) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Instead of learning Q, we learn

I State-value function V ≈ V π,γ

I Dynamics model f , approximating st+1 = f (st , at) + ζt

I Given transition (st , at , st+1), infer ζt = st+1 − f (st , at)

I Q(st , at) = E [rt + γV (st+1)] = E [rt + γV (f (st , at) + ζt)], and at = π(st , θ, ζt)

SVG(∞) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Just learn dynamics model f

I Given whole trajectory, infer all noise variables

I Freeze all policy and dynamics noise, differentiate through entire deterministic
computation graph

SVG(∞) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Just learn dynamics model f

I Given whole trajectory, infer all noise variables

I Freeze all policy and dynamics noise, differentiate through entire deterministic
computation graph

SVG(∞) Algorithm

θ

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Just learn dynamics model f

I Given whole trajectory, infer all noise variables

I Freeze all policy and dynamics noise, differentiate through entire deterministic
computation graph

SVG Results

I Applied to 2D robotics tasks

I Overall: different gradient estimators behave similarly

N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, et al. “Learning Continuous Control Policies by Stochastic Value Gradients”. arXiv
preprint arXiv:1510.09142 (2015)

SVG Results

I Applied to 2D robotics tasks

I Overall: different gradient estimators behave similarly

N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, et al. “Learning Continuous Control Policies by Stochastic Value Gradients”. arXiv
preprint arXiv:1510.09142 (2015)

Deterministic Policy Gradient

I For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

I Intuition: finite difference gradient estimators

I But SVG(0) gradient is fine when σ → 0

∇θ
∑
t

Q(st , π(st , θ, ζt))

I Problem: there’s no exploration.

I Solution: add noise to the policy, but estimate Q with TD(0), so it’s valid
off-policy

I Policy gradient is a little biased (even with Q = Qπ), but only because state
distribution is off—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. ICML. 2014

Deterministic Policy Gradient

I For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

I Intuition: finite difference gradient estimators

I But SVG(0) gradient is fine when σ → 0

∇θ
∑
t

Q(st , π(st , θ, ζt))

I Problem: there’s no exploration.

I Solution: add noise to the policy, but estimate Q with TD(0), so it’s valid
off-policy

I Policy gradient is a little biased (even with Q = Qπ), but only because state
distribution is off—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. ICML. 2014

Deterministic Policy Gradient

I For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

I Intuition: finite difference gradient estimators

I But SVG(0) gradient is fine when σ → 0

∇θ
∑
t

Q(st , π(st , θ, ζt))

I Problem: there’s no exploration.

I Solution: add noise to the policy, but estimate Q with TD(0), so it’s valid
off-policy

I Policy gradient is a little biased (even with Q = Qπ), but only because state
distribution is off—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. ICML. 2014

Deterministic Policy Gradient

I For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

I Intuition: finite difference gradient estimators

I But SVG(0) gradient is fine when σ → 0

∇θ
∑
t

Q(st , π(st , θ, ζt))

I Problem: there’s no exploration.

I Solution: add noise to the policy, but estimate Q with TD(0), so it’s valid
off-policy

I Policy gradient is a little biased (even with Q = Qπ), but only because state
distribution is off—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. ICML. 2014

Deterministic Policy Gradient

I For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

I Intuition: finite difference gradient estimators

I But SVG(0) gradient is fine when σ → 0

∇θ
∑
t

Q(st , π(st , θ, ζt))

I Problem: there’s no exploration.

I Solution: add noise to the policy, but estimate Q with TD(0), so it’s valid
off-policy

I Policy gradient is a little biased (even with Q = Qπ), but only because state
distribution is off—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. ICML. 2014

Deterministic Policy Gradient

I For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

I Intuition: finite difference gradient estimators

I But SVG(0) gradient is fine when σ → 0

∇θ
∑
t

Q(st , π(st , θ, ζt))

I Problem: there’s no exploration.

I Solution: add noise to the policy, but estimate Q with TD(0), so it’s valid
off-policy

I Policy gradient is a little biased (even with Q = Qπ), but only because state
distribution is off—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. ICML. 2014

Deep Deterministic Policy Gradient
I Incorporate replay buffer and target network ideas from DQN for increased

stability

I Use lagged (Polyak-averaging) version of Qφ and πθ for fitting Qφ (towards
Qπ,γ) with TD(0)

Q̂t = rt + γQφ′(st+1, π(st+1; θ′))

I Pseudocode:

for iteration=1, 2, . . . do
Act for several timesteps, add data to replay buffer
Sample minibatch
Update πθ using g ∝ ∇θ

∑T
t=1 Q(st , π(st , zt ; θ))

Update Qφ using g ∝ ∇φ

∑T
t=1(Qφ(st , at)− Q̂t)

2,
end for

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, et al. “Continuous control with deep reinforcement learning”. arXiv preprint
arXiv:1509.02971 (2015)

DDPG Results

Applied to 2D and 3D robotics tasks and driving with pixel input

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, et al. “Continuous control with deep reinforcement learning”. arXiv preprint
arXiv:1509.02971 (2015)

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator

I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â

I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â
I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â

I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â
I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â
I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â
I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â
I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Policy Gradient Methods: Comparison

I Two kinds of policy gradient estimator
I REINFORCE / score function estimator: ∇ log π(a | s)Â.

I Learn Q or V for variance reduction, to estimate Â
I Pathwise derivative estimators (differentiate wrt action)

I SVG(0) / DPG: d
daQ(s, a) (learn Q)

I SVG(1): d
da (r + γV (s ′)) (learn f ,V)

I SVG(∞): d
dat

(rt + γrt+1 + γ2rt+2 + . . .) (learn f)

I Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias

Thanks

Questions?

	Introduction
	Derivative Free Optimization / Evolution
	Policy Gradient Methods
	Variance Reduction for Policy Gradients
	Pathwise Derivative Methods

