Distributed Bayesian Learning with Stochastic Natural-gradient EP and the Posterior Server

Yee Whye Teh

in collaboration with: Minjie Xu, Balaji Lakshminarayanan, Leonard Hasenclever, Thibaut Lienart, Stefan Webb, Sebastian Vollmer, Charles Blundell

Bayesian Learning

- Parameter vector *X*.
- Data items $Y = y_1, y_2, ..., y_N$.

• Model:

$$p(X,Y) = p(X) \prod_{i=1}^{N} p(y_i|X)$$

• Aim:

$$p(X|Y) = \frac{p(X)p(Y|X)}{p(Y)}$$

- Inference algorithms:
 - Variational inference: parametrise posterior as q_{θ} and optimize θ .
 - Markov chain Monte Carlo: construct samples $X_1...X_n \sim p(X|Y)$.

Machine Learning on Distributed Systems

- Distributed storage
- Distributed computation
- costly network communications

Distributed Bayesian Learning with SNEP and Posterior Server

Parameter Server

Parameter server [Ahmed et al 2012], DistBelief network [Dean et al 2012].

worker:

- $x_i = x$
- updates to x_i'
- returns

 $\Delta x_i = x_i' - x_i$

Distributed Bayesian Learning with SNEP and Posterior Server

Embarassingly Parallel MCMC Sampling

[Scott et al 2013, Neiswanger et al 2013, Wang & Dunson 2013, Stanislav et al 2014] inference problems. Collect samples.

$${X_{ji}}_{j=1...m,i=1...n}$$

 Only communication at the combination stage.

Distributed Bayesian Learning with SNEP and Posterior Server

Embarassingly Parallel MCMC Sampling

- Unclear how to combine worker samples well.
- Particularly if local posteriors on worker machines do not overlap.

Figure from Wang & Dunson

Distributed Bayesian Learning with SNEP and Posterior Server

Main Idea

- Identify regions of high (global) posterior probability mass.
- Shift each local posterior to agree with high probability region, and draw samples from these.
- How to find high probability region?
 - Defined in terms of low order moments.
 - •Use information gained from local posterior samples (using small amount of communication).

Figure from Wang & Dunson

Tilting Local Posteriors

• Each worker machine j has access only to its data subset.

$$p_j(X | y_j) = p_j(X) \prod_{i=1}^{I} p(y_{ji} | X)$$

where $p_j(X)$ is a local prior and $p_j(X | y_j)$ is local posterior.

- Adapt local priors $p_j(X)$ so that local posterior agree on certain moments $\mathbb{E}_{p_j(X|y_j)}[s(X)] = s_0 \quad \forall j$
- Use expectation propagation (EP) [Minka 2001] to adapt local priors.

Expectation Propagation

If N is large, the worker j likelihood term p(y_j | X) should be well approximated by Gaussian

$$p(y_j | X) \approx q_j(X) = \mathcal{N}(X; \mu_j, \Sigma_j)$$

Parameters fit iteratively to minimize KL divergence:

$$p(X \mid y) \approx p_j(X \mid y) \propto p(y_j \mid X) p(X) \prod_{\substack{k \neq j \\ p_j(X)}} q_k(X)$$

$$q_j^{\text{new}}(\cdot) = \arg \min_{\mathcal{N}(\cdot;\mu,\Sigma)} \text{KL}(p_j(\cdot \mid y) \parallel \mathcal{N}(\cdot;\mu,\Sigma) p_j(\cdot))$$

• Optimal q_j is such that first two moments of $\mathcal{N}(\cdot; \mu, \Sigma)p_j(\cdot)$ agree with $p_j(\cdot|y)$

- Moments of local posterior estimated using MCMC sampling.
- At convergence, first two moments of all local posteriors agree.

[Minka 2001]

Yee Whye Teh

Posterior Server Architecture

Distributed Bayesian Learning with SNEP and Posterior Server

Bayesian Logistic Regression

•d=20, # data items N=1000.

- NUTS based sampler.
 - •# workers m = 4,10,50.
 - •# MCMC iters T = 1000,1000,10000.
- # EP iters k given as vertical lines.

Distributed Bayesian Learning with SNEP and Posterior Server

Bayesian Logistic Regression

• MSE of posterior mean, as function of total # iterations.

Distributed Bayesian Learning with SNEP and Posterior Server

Stochastic Natural-gradient EP

- EP has no guarantee of convergence.
- EP technically cannot handle stochasticity in moment estimates.
- Long MCMC run needed for good moment estimates.
- Fails for neural nets and other complex high-dimensional models.
- Stochastic Natural-gradient EP:
 - Alternative variational algorithm to EP.
 - Convergent, even with Monte Carlo estimates of moments.
 - Double-loop algorithm [Welling & Teh 2001, Yuille 2002, Heskes & Zoeter 2002]

Demonstrative Example

Distributed Bayesian Learning with SNEP and Posterior Server

Comparison to Maximum Likelihood SGD

- Maximum likelihood via SGD:
 - DistBelief [Dean et al 2012]
 - Elastic-averaging SGD [Zhang et al 2015]

- Separate likelihood approximations and states per worker.
 - Worker parameters not forced to be exactly same.
- Each worker learns to approximate its own likelihood.
 - Can be achieved without detailed knowledge from other workers.
- Diagonal Gaussian exponential family.
 - Variance estimates are important to learning.

Experiments on Distributed Bayesian Neural Networks

- Bayesian approach to learning neural network:
 - compute parameter posterior given complex neural network likelihood.
 - Diagonal covariance Gaussian prior and exponential-family approximation.
- Two datasets and architectures: MNIST fully-connected, CIFAR10 convnet.

Implementation in Julia.

- Workers are cores on a server.
- Sampler is stochastic gradient Langevin dynamics [Welling & Teh 2011].
 - Adagrad [Duchi et al 2011]/RMSprop [Tieleman & Hinton 2012] type adaptation.
- Evaluated on test accuracy.

MNIST 500x300

Distributed Bayesian Learning with SNEP and Posterior Server

MNIST 500x300

Distributed Bayesian Learning with SNEP and Posterior Server

MNIST 500x300

Distributed Bayesian Learning with SNEP and Posterior Server

MNIST Very Deep MLP

Distributed Bayesian Learning with SNEP and Posterior Server

CIFAR10 ConvNet

Distributed Bayesian Learning with SNEP and Posterior Server

Concluding Remarks

- Novel distributed learning based on a combination of Monte Carlo and a convergent alternative to expectation propagation.
- Combination of variational and MCMC algorithms.
 - Advantageous over both pure variational and pure MCMC algorithms.
- Being Bayesian can be advantageous computationally in distributed setting.
- Thank you!

Distributed Bayesian Learning with SNEP and Posterior Server