
Reining in the Outliers in Map-Reduce Clusters using Mantri

Ganesh Ananthanarayanan

Microsoft Research/UC Berkeley

Srikanth Kandula

Microsoft Research

Albert Greenberg

Microsoft Research

Ion Stoica

UC Berkeley

Yi Lu

Microsoft Research

Bikas Saha

Microsoft Bing

Edward Harris

Microsoft Bing

June 2010

Technical Report
MSR-TR-2010-69

Experience from an operational map-reduce cluster revealsthat outliers significantly prolong job com-
pletion. The causes for outliers include (i) machine characteristics - both hardware reliability (e.g., disk
failures) as well as run-time contention for processor, memory and other resources, (ii) network char-
acteristics with varying bandwidths and congestion along paths, and (iii) imbalance in workload among
tasks. We presentMantri, a system that monitors tasks and culls outliers usingcause-andresource-aware
techniques.Mantri’s strategies include smart restart of outliers, network-aware placement of tasks and
protecting outputs of valuable tasks.Mantri’s principled strategy of dealing with outliers is a significant
advancement over prior work that concentrate only on duplicating tasks. Using real-time progress reports,
Mantri detects outliers early in their lifetime, and takes appropriate action based on their causes. Early ac-
tion frees up resources that can be used by subsequent tasks and expedites the job overall. Deployment in
Bing’s production cluster and extensive trace-driven simulation indicate thatMantri is 3.1x more effective
than the existing state-of-the-art in improving job completion times.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com



1 Introduction

In a very short time, MapReduce has become the dominant paradigm for large data processing on compute clusters.
Software frameworks based on MapReduce [1, 10, 12] have been deployed on tens of thousands of machines to imple-
ment a variety of applications, such as building search indices, recommendation engines, optimizing advertisements,
and mining social networks.

While highly successful, MapReduce clusters come with their own set of challenges. One such challenge is the
often unpredictable performance of the MapReduce jobs. A job consists of a set of tasks which are organized in phases.
Tasks in a phase depend on the results computed by the tasks inthe previous phase and can run in parallel. When a
task takes longer to finish than other similar tasks, the tasks in the subsequent phase are delayed. At key points in the
job, a few suchoutlier tasks can prevent the rest of the job from making progress (Table 1 defines the terms). As the
size of the cluster and the size of the jobs grow, the impact ofoutliers increases dramatically. Addressing the outlier
problem is critical to speed up job completion and improve cluster efficiency.

Even a few percent of improvement in the efficiency of a cluster consisting of tens of thousands of nodes can
save millions of dollars a year. In addition, finishing production jobs quickly is a competitive advantage. Doing so
predictably allows SLAs to be met. In iterative modify/ debug/ analyze development cycles, the ability to iterate faster
improves programmer productivity.

In this paper, we characterize the impact and causes of outliers by measuring a large MapReduce production
cluster. This cluster is up to two orders of magnitude largerthan those in previous publications [1, 12, 20] and exhibits
a high level of concurrency due to many jobs simultaneously running on the cluster and many tasks on a machine. We
find that variation in completion times among functionally similar tasks is large and that outliers inflate the completion
time of jobs by34% at median.

We identify three categories of root causes for outliers that are induced by the interplay between storage, network
and structure of map-reduce jobs. First,machine characteristicsdictate the performance of tasks. These include static
aspects such hardware reliability (e.g., disk failures) and dynamic aspects such as contention for processor, memory
and other resources. Second,network characteristicsaffect the data transfer rates of tasks. Datacenter networks are
over-subscribed leading to variance in congestion among different paths. Finally, the specifics of MapReduce leads to
imbalancein work among tasks. For example, a partitioning of data overa key space with low entropy leads to skews
among tasks in input sizes.

We presentMantri, 1 a system that monitors tasks and culls outliers based on their causes. It uses the following
algorithms: (i) Restarting outlier tasks cognizant to resource constraints and work imbalances, (ii) Network-aware
placement of tasks, and (iii) Protecting output of tasks based on a cost-benefit analysis.

The detailed analysis and decision process employed byMantri is a key departure from the state-of-the-art for
outlier mitigation in map-reduce implementations [10, 12, 20]; these focus only on duplicating tasks. To our knowl-
edge, none of them protect against data loss induced recomputations or network congestion induced outliers.Mantri’s
placement of tasks is cognizant to the congestion in the network. On a task’s completion, its output is replicated if the
benefit of not having to recompute outweighs the cost of replicating.

Further,Mantri performs intelligent restarting of outliers. A task that runs for long because it has more work to
do will not be restarted; if it lags due to reading data over a low-bandwidth path, it will be restarted only if a more
advantageous network location becomes available. Unlike current approaches that duplicate tasks only at the end of
a phase,Mantri uses real-time progress reports to act early. While early action on outliers frees up resources that
could be used for pending tasks, doing so is nontrivial. A duplicate may finish faster than the original task but has the
opportunity cost of using up an extra unit of resource that other pending work could have used.

1From Sanskrit, a minister who keeps the king’s court in order

1



Term Description
Task Atomic unit of computation with a fixed input
Phase A collection of tasks that can run in parallel,

e.g., map, reduce
Outlier A task that takes longer to finish compared to

other tasks in the phase
Workflow A directed acyclic graph denoting how data

flows between phases
Job An execution of the workflow

Table 1:Definitions of terms used in this paper.

Some of these outlier causes are known in the high performance and parallel computing community [2, 5]. How-
ever, the comprehensive formulation, relative break-downof contribution from each cause and a unified solution in the
context of map-reduce is novel.

In summary we make the following contributions. First, we provide an analysis of the causes of outliers in a large
production MapReduce cluster. Second, we developMantri, that takes early actions based on understanding the causes
and the opportunity cost of actions. Finally, we perform an extensive evaluation ofMantri and compare it to existing
solutions.

By deploying aMantri prototype on a production cluster, of thousands of servers,that supports Bing and replaying
several thousand jobs collected on this cluster in a simulator, we show that:
• Mantri reduces the completion time of jobs by 20% on average on the production clusters. Extensive simulations

show that job phases are quicker by 21% and 42% at the 50th and 75th percentiles. Its median reduction in comple-
tion time improves on the next best scheme by3.1× while using fewer resources.

• By placingreducetasks to avoid network hotspots,Mantri improves the completion times of the reduce phases by
60%.

• By preferentially replicating the output of tasks that are more likely to be lost or expensive to recompute,Mantri
speeds up half of the jobs by at least20% each, with only1% increase in network traffic.

2 Background

We monitored the cluster and software systems that support the Bing search engine for over twelve months. This is a
cluster of tens of thousands of commodity servers managed byCosmos, a proprietary upgraded form of Dryad [12].
Despite some differences, implementations of map-reduce [1, 10, 12] are broadly similar.

While programmers can write native code, most of the jobs in the examined cluster are written in Scope [7], a
mash-up language that mixes SQL-like declarative statements with user code. The Scope compiler transforms a job
into a workflow– a directed acyclic graph where each node is a phase and each edge joins a phase that produces data
to another that uses it. A phase is a set of one or more tasks that run in parallel and perform the same computation on
different parts of the input stream. Typical phases are map,reduce and join. Compiler optimizations can merge different
functionality into one phase or divide functionality across phases. The number of tasks in a phase is chosen at compile
time. A task will read its input over the network if it is not available on the local disk but outputs are written to the local
disk. The eventual outputs of a job (as well as raw data) are stored in a reliable block storage system implemented on
the same servers that do computation. Blocks are replicatedn-way’s for reliability. A run-time scheduler assigns tasks
to machines, based on data locations, dependence patterns and cluster-wide resource availability. The network layout
is such that there is more bandwidth within a rack than acrossracks.

We obtain detailed logs from the Scope compiler and the Cosmos scheduler. At each of the job, phase and task
levels, we record the execution behavior as represented by begin and end times, the machines(s) involved, the sizes

2



Dates Phases Jobs Compute Data Network
x 103 (years) (PB) (PB)

May 25,26 19.0 938 49.1 12.6 .66
Jun 16,17 16.5 991 88.0 22.7 1.22
Jul 20,21 22.0 1183 51.6 14.3 .67
Aug 20,21 29.2 1873 60.6 18.7 .76
Sep 15,16 27.4 1653 73.0 22.8 .73
Oct 15,16 20.4 1362 84.1 25.3 .86
Nov 16,17 37.8 1834 88.4 25.0 .68
Dec 10,11 18.7 1777 96.2 18.6 .72
Jan 11,12 24.4 1842 79.5 21.5 1.99

Table 2:Details of the logs from a production cluster consisting of thousands of servers.

of input and output data, the fraction of data that was read across racks and a code denoting the success or type of
failure. We also record the workflow of jobs. Table2 depicts the random subset of logs that we analyze here. Spanning
eighteen days, this dataset is at least one order of magnitude larger than prior published data along many dimensions,
e.g., number of jobs, cluster size.

3 The Outlier Problem

We begin with a first principles approach to the outlier problem, then analyze data from the production cluster to
quantify the problem and obtain a breakdown of the causes of outliers (§4). Beginning at the first principles motivates
a distinct approach (§5), which as we show in§6 significantly improves on prior art.

3.1 Outliers in a Phase

Assume a phase consists ofn tasks and hass slots.2 On our cluster, the median ratio ofn
s

is 2.11 with a stdev of
12.37. The goal is to minimize the phase completion time,i.e., the time when the last task finishes.

Based on data from the production cluster, we modelti, the completion time of taski, as a function of the size of
the data it processes, the code it runs, the resources available on the machine it executes and the bandwidth available
on the network paths involved:

ti = f (datasize, code, machine, network) . (1)

Large variation exists along each of the four variables leading to considerable difference in task completion times.
The amount of data processed by tasks in the same phase varies, sometimes widely, due to limitations in dividing
work evenly. The code is the same for tasks in a phase, but differs significantly across phases (e.g., map and reduce).
Placing a task on a machine that has other resource hungry tasks inflates completion time, as does reading data across
congested links.

In the ideal scenario, where every task takes the same amountof time, sayT , scheduling is simple. Any work-
conserving schedule would complete the phase in

(

⌈n
s
⌉ × T

)

. When the task completion time varies, however, a

naive work-conserving scheduler can take up to
(

P

n
ti

s
+ max ti

)

. A large variation inti increases the termmax ti

and manifests as outliers.
The goal of a scheduler is to minimize the phase completion time and make it closer to

P

n
ti

s
. Sometimes, it can

do even better. By placing tasks at less congested machines or network locations, theti’s themselves can be lowered.
The challenge lies in recognizing the aspects that can be changed and scheduling accordingly.

2Slot is a virtual token, akin to a quota, for sharing cluster resources among multiple jobs. One task can run per slot at a time.

3



Extract 22K Partition 13K Aggregate 51K 

Barrier 

File 
System 

(a) Partial workflow with the number of tasks in each phase

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

# 
R

un
ni

ng
 T

as
ks

(N
or

m
al

iz
ed

 b
y 

m
ax

 in
 p

ha
se

)

Time (Normalized by Job Lifetime)

B

R R

Extract
Partition

Aggregate

(b) Time lapse of task execution (R=Recomputes, B=Barrier).

Figure 1:An example job from the production cluster

3.2 Extending from a phase to a job

The phase structure of map-reduce jobs adds to the variability. An outlier in an early phase, by delaying when tasks
that use its output may start, has cumulative effects on the job. At barriers in the workflow, where none of the tasks in
successive phase(s) can begin until all of the tasks in the preceding phase(s) finish, even one outlier can bring the job to
a standstill3. Barriers occur primarily due to reduce operations that areneither commutative nor associative [30], for
instance, a reduce that computes the median of records that have the same key. In our cluster, the median job workflow
has eight phases and eleven edges, 47% are barriers (number of edges exceeds the number of phases due to table joins).

Dependency across phases also leads to outliers when task output is lost and needs to berecomputed. Data loss
happens due to a combination of disk errors, software errors(e.g., bugs in garbage collectors) and timeouts due to
machines going unresponsive at times of high load. In fact, recomputes cause some of the longest waiting times
observed on the production cluster. A recompute can cascadeinto earlier phases if the inputs for the recomputed task
are no longer available and need to be regenerated.

3.3 Illustration of Outliers

Figure1(a)shows the workflow forLog Merge, a job whose structure is typical of those in the cluster. Thejob reads
a dataset of search usage and derives an index. It consists oftwo map-reduce operations and a join, but for clarity
we only show the first map-reduce here. Phase names follow theDryad [12] convention–extract reads raw blocks,
partition divides data on the key andaggregatereduces items that share a key.

Figure1(b)depicts a timeline of an execution of this workflow. It plots the number of tasks of each phase that are
active, normalized by the maximum tasks active at any time inthat phase, over the lifetime of the job. Tasks in the first
two phases start in quick succession to each other at∼.05, whereas the third starts after a barrier.

Some of the outliers are evident in the long lulls before a phase ends when only a few of its tasks are active. In
particular, note the regions before x∼.1 and x∼.5. The spike in phase #2 here is due to the outliers in phase #1holding

3There is a variant in implementation where a slot is reservedfor a task before all its inputs are ready. This is either to amortize the latency of
network transfer by moving data over the network as soon as itis generated [1, 10], or compute partial results and present answersonline even
before the job is complete [8]. Regardless, pre-allocation of slots can hog more resources for longer periods if the input task(s) straggle.

4



on to the job’s slots. At the barrier, x∼.1, just a few outliers hold back the job from making forward progress. Though
most aggregate tasks finish at x∼.3, the phase persists for another 20%.

The worst cases of waiting immediately follow recomputations of lost intermediate data marked byR. Recompu-
tations manifest as tiny blips near the x axes for phases thathad finished earlier,e.g., phase #2 sees recomputes at x∼.2
though it finished at x∼.1. At x∼.2, note that aggregate almost stops due to a few recomputations.

We now quantify the magnitude of the outlier problem, beforepresenting our solution in detail.

4 Quantifying the Outlier Problem

We characterize the prevalence and causes of outliers and their impact on job completion times and cluster resource
usage. We will argue that three factors – dynamics, concurrency and scale, that are somewhat unique to large map-
reduce clusters for efficient and economic operation, lie atthe core of the outlier problem. To our knowledge, we are
the first to report detailed experiences from a large production map-reduce cluster.

4.1 Prevalence of Outliers

Figure2 plots the fraction of high runtime outliers and recomputes in a phase. For exposition, we arbitrarily say that a
task has high runtime if its time to finish is longer than 1.5x the median task duration in its phase. By recomputes, we
mean instances where a task output is lost and dependent tasks wait until the output is regenerated.

We see in Figure2 that 25% of phases have more than 15% of their tasks as outliers. The figure also shows that 99%
of the phases see no recomputes. Though rare, recomputes have a widespread impact (§4.3). Two out of a thousand
phases have over 50% of their tasks waiting for data to be recomputed.

How much longer do outliers run for? Figure3 shows that 80% of the runtime outliers last less than 2.5 times the
median task duration in the phase, with a uniform probability of being delayed by between 1.5x to 2.5x.

The tail is heavy and long– 10% take more than 10x the median duration. Ignoring these if they happen early in a
phase, as current approaches do, appears wasteful.

Figure3 shows that most recomputations behave normally, 90% of themare clustered about the median task, but
3% take over 10x longer.

4.2 Causes of Outliers

To tease apart the contributions of each cause, we first determine whether a task’s runtime can be explained by the
amount of data it processes or reads across the network4. If not, then the outlier is likely due to workload imbalance
or poor placement. Otherwise, the outlier is likely due to resource contention or problematic machines.

Figure4(a)shows that in 40% of the phases (top right), all the tasks withhigh runtimes (i.e., over 1.5X the median
task) are well explained by the amount of data they process ormove on the network. Duplicating these tasks would not
make them run faster and will waste resources. At the other extreme, in 18% of the phases (bottom left), none of the
high runtime tasks are explained by the data they process. Figure4(b)shows tasks that take longer than they should, as
predicted by the model, but do not take over 1.5X the median task in their phase. Such tasks present an opportunity for
improvement. They may finish faster if run elsewhere, yet current schemes do nothing for them. 20% of the phases (on
the top right) have over 55% of such improvable tasks.

4For each phase, we fit a linear regression model for task lifetime given the size of input and the volume of traffic moved across low bandwidth
links. When the residual error for a task is less than 20%, i.e., its run time is within [.8, 1.2]X of the time predicted by this model, we call it
explainable.

5



 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 P
ha

se
s

Fraction of Outliers

high runtime
recompute

Figure 2:What fraction of tasks in a phase are outliers?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  4  6  8  10

C
um

ul
at

iv
e

Ratio of Straggler Duration to the 
 Duration of the Median Task

high runtime
recompute

Figure 3:How much longer do outliers take to finish?

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

0

0.2

0 20 40 60 80 100

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

% of tasks that have high 

runtime but are explainable

(a)

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

0

0.2

0 20 40 60 80 100

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

% of tasks that are unexplainably 

long, but not long per-se
(b)

Figure 4:Contribution of data size to task runtime (see§4.2)

40

60

80

100

C
D

F
 %

 P
h

a
se

T
im

e

0

20

0 20 40 60 80 100

C
D

F
 %

 P
h

a
se

Ideal Redn. (%) in Completion Time 

(62.8%)

Figure 5: For reduce phases, the reduction in comple-
tion time over the current placement by placing tasks in a
network-aware fashion.

Data Skew: It is natural to ask why data size varies across tasks in a phase. Across phases, the coefficient of vari-
ation (stdev

mean
) in data size is .34 and 3.1 at the 50th and 90th percentiles. From experience, dividing work evenly is

non-trivial for a few reasons. First, scheduling each additional task has overhead at the job manager. Network band-
width is another reason. There might be too much data on a machine for a task to process, but it may be worse to split
the work into multiple tasks and move data over the network. Athird reason is poor coding practice. If the data is
partitioned on a key space that has too little entropy, i.e.,a few keys correspond to a lot of data, then the partitions will
differ in size. Some reduce tasks are not amenable to splitting (neither commutative nor associative [31]), and hence
each partition has to be processed by one task. Some joins andsorts are similarly constrained. Duplicating tasks that
run for long because they have a lot of work to do is counter productive.

Crossrack Traffic: We find that reduce phases contribute over 70% of the cross rack traffic in the cluster, while most
of the rest is due to joins. We focus on cross rack traffic because the network links upstream of the racks have less
bandwidth than the cumulative capacity of servers in the rack.

We find that crossrack traffic leads to outliers in two ways. First, in phases where moving data across racks is
avoidable (through locality constraints), a task that endsup in a disadvantageous network location runs slower than
others. Second, in phases where moving data across racks is unavoidable, not accounting for the competition among
tasks within the phase (self-interference) leads to outliers. In a reduce phase, for example, each task reads from every
map task. Since the maps are spread across the cluster, regardless of where a reduce task is placed, it will read a lot of
data from other racks. Current implementations place reduce tasks on any machine with spare slots. A rack that has
too many reduce tasks will be congested on its downlink leading to outliers.

Figure5 compares the current placement with an ideal one that minimizes the cost of network transfer. When
possible it avoids reading data across racks, and if not, places tasks such that their competition for bandwidth does not
result in hotspots. In over 50% of the jobs, reduce phases account for 17% of the job’s lifetime. For the reduce phases,
the figure shows that the median phase takes 62% longer under the current placement.

Bad and Busy Machines: We rarely find machines that persistently inflate runtimes. Recomputations, however,

6



40

60

80

100

1.2

1.3

1.4

CPU Ratio

Memory Ratio

#Recomputes

R
e

co
m

p
 U

ti
l

to
 A

v
g

C
u

m
u

la
ti

v
e

0

20

40

1

1.1

0 10 20 30
Fraction of Cluster (%)

#Recomputes

R
e

co
m

p
 

C
u

m
u

la
ti

v
e

Figure 6:The ratio of processor and memory usage when
recomputations happen to the average at that machine (y1).
Also, the cumulative percentage of recomputations across
machines (y2).

 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800  1000

T
im

e~
(m

in
ut

es
)

Machine Id

model outliers recomputes

Figure 7: Clustering recomputations and outliers across
time

are more localized. Half of them happen on 5% of the machines in the cluster. Figure6 plots the cumulative share
of recomputes across machines on the axes on the right. The figure also plots the ratio of processor and memory
utilization during recomputes to the overall average on that machine. The occurrence of recomputes is correlated with
increased use of resources by at least 20%. The subset of machines that triggers most of the recomputes is steady over
days but varies over weeks, likely indicative of changing hotspots in data popularity or corruption in disks [6].

Figure7 investigates the occurrence of “spikes” in outliers. We findthat runtime outliers (shown as stars) cluster
by time. If outliers were happening at random, there should not be any horizontal bands. Rather it appears that jobs
contend for resources at some times. Even at these busy times, other lightly loaded machines exist. Recomputations
(shown as circles) cluster by machine. When a machine loses the output of a task, it has a higher chance of losing the
output of other tasks.

Rarely does an entire rack of servers experience the same anomaly. When an anomaly happens, the fraction of
other machines within the rack that see the same anomaly is less than1

20 for recomputes, and420 for runtime with high
probability. So, it is possible to restart a task, or replicate output to protect against loss on another machine within the
same rack as the original machine.

4.3 Impact of Outliers

We now examine the impact of outliers on job completion timesand cluster usage. Figure8 plots the CDF for the
ratio of job completion times, with different types of outliers included, to an ideal execution that neither has skewed
run times nor loses intermediate data. The y-axes weighs each job by the total cluster time its tasks take to run. The
hypothetical scenarios, with some combination of outlierspresent but not the others, do not exist in practice. So we
replayed the logs in a trace driven simulator that retains the structure of the job, the observed task durations and
the probabilities of the various anomalies (details in§6). The figure shows that at median, the job completion time
would be lower by 15% if runtime outliers did not happen, and by more than 34% when none of the outliers happen.
Recomputations impact fewer jobs than runtime outliers, but when they do, they delay completion time by a larger
amount.

By inducing high variability in repeat runs of the same job, outliers make it hard to meet SLAs. At median, the
ratio of stdev

mean
in job completion time is 0.8, i.e., jobs have a non-trivial probability of taking twice as long or finishing

half as quickly.
To summarize, we take the following lessons from our experience.

• High running times of tasks do not necessarily indicate slowexecution - there are multiple reasons for legitimate
variation in durations of tasks.

7



40

60

80

100

No Stragglers

No Recomputes

Neither

C
D

F
 %

 J
o

b
 T

im
e

0

20

0 20 40 60 80 100

Neither

Ideal Redn. (%) in Completion Time
C

D
F

 %
 J

o
b

 

(34.7%)

Figure 8:Percentage speed-up of job completion time in the ideal casewhen (some combination of) outliers do not happen

contention 

for resources 

• Paths have diff. capacity 

• Input becomes unavailable 

• duplicate 

• kill, restart 

network aware 

placement 

• replicate output 

• pre-compute 

start tasks that 

do more first 

unequal division 

of work 

execute Task Operations read input 

Outlier 

Causes 

Solutions 

Figure 9:The Outlier Problem: Causes and Solutions

• Every job is guaranteed some slots, as determined by clusterpolicy, but can use idle slots of other jobs. Hence,
judicious usage of resources while mitigating outliers hascollateral benefit.

• Recomputations affect jobs disproportionately. They manifest in select faulty machines and during times of heavy
resource usage. Nonetheless, there are no indications of faulty racks.

5 Mantri Design

Mantri identifies points at which tasks are unable to make progress at the normal rate and implements targeted solutions.
The guiding principles that distinguishMantri from prior outlier mitigation schemes arecause awarenessandresource
cognizance.

Distinct actions are required for different causes. Figure9 specifies the actionsMantri takes for each cause. If
a task straggles due to contention for resources on the machine, restarting or duplicating it elsewhere can speed it
up (§5.1). If a task takes too long because it has a lot of work to do, there are two options: split it into smaller tasks or
schedule large tasks before the others to avoid being stuck with the large ones near completion (§5.1, §5.4). However,
not moving data over the low bandwidth links between racks, and if unavoidable, doing so while avoiding hotspots
requires systematic placement (§5.2). To speed up tasks that wait for lost input to be recomputed,we find ways to
protect task output (§5.3).

There is a subtle point with outlier mitigation: reducing the completion time of a task may in fact increase the job
completion time. For example, replicating the output of every task will drastically avoid recomputations, both copies
are unlikely to be lost at the same time, but can slow down the job because more time and bandwidth are used up for
this task denying resources to other tasks that are waiting to run. Similarly, addressing outliers early in a phase vacates
slots for outstanding tasks and can speed up completion. But, potentially uses twice as many resources per task. Unlike
Mantri, none of the existing approaches act early or replicate output. Further, naively extending current schemes to act
early without being cognizant of the cost of resources, as weshow in§6, leads to worse performance.

Closed-loop action allowsMantri to act optimistically by bounding the cost when probabilistic predictions go awry.
For example, even whenMantri cannot ascertain the cause of an outlier, it experimentallystarts copies. If the cause does

8



time 

1 
2 

t t 

t t 

2t t 

2t 

time 

1 
2 

t t 
t 

t 2t 
t 2t 

time 

slots 

1 
2 

t 
5t 

t 
t 

2t t 2t baseline, 

kill, restart 

duplicate 

w/o early 

Figure 10:A stylized example to illustrate our main ideas. Tasks that are eventually killed are filled with stripes, repeat instances
of a task are filled with a mesh.

not repeatedly impact the task, the copy can finish faster. Tohandle the contrary case,Mantri continuously monitors
running copies and kills those whose cost exceeds the benefit.

Based on task progress reports,Mantri estimates for each task the remaining time to finish,trem, and the predicted
completion time of a new copy of the task,tnew. Tasks report progress once every 10s or ten times in their lifetime,
whichever is smaller. We use∆ to refer to this period. We defer details of the estimation to§5.5and proceed to describe
the algorithms for mitigating each of the main causes of outliers. All that matters is thattrem be an accurate estimate
and that the predicted distributiontnew account for the underlying work that the task has to do, the appropriateness of
the network location and any persistent slowness of the new machine.

5.1 Resource-aware Restart

We begin with a simple example to help exposition. Figure10shows a phase that has seven tasks and two slots. Normal
tasks run for timest and2t. One outlier has a runtime of5t. Time increases along the x axes.

The timeline at the top shows a baseline which ignores outliers and finishes at7t. Prior approaches that only
address outliers at the end of the phase also finish at7t.

Note that if this outlier has a large amount of data to processletting the straggling task be is better than killing or
duplicating it, both of which waste resources.

If however, the outlier was slowed down by its location, the second and third timelines compare duplication to a
restart that kills the original copy. After a short time to identify the outlier, the scheduler can duplicate it at the next
available slot (the middle time-line) or restart it in-place (the bottom timeline). If prediction is accurate, restarting is
strictly better. However, if slots are going idle, it may be worthwhile to duplicate rather than incur the risk of losing
work by killing.

Duplicating the outlier costs a total of3t in resources (2t before the original task is killed andt for the duplicate)
which may be wasteful if the outlier were to finish in sooner than3t by itself.

5.1.1 Restart Algorithm

Mantri uses two variants of restart, the first kills a running task and restarts it elsewhere, the second schedules a
duplicate copy. In either method,Mantri restarts only when the probability of success, i.e.,P(tnew < trem) is high.
Sincetnew accounts for the systematic differences and the expected dynamic variation,Mantri does not restart tasks
that are normal (e.g., runtime proportional to work). Pseudocode 1 summarizes the algorithm.Mantri kills and restarts
a task if its remaining time is so large that there is a more than even chance that a restart would finish sooner. In

9



1: let ∆ = period of progress reports
2: let c = number of copies of a task
3: periodically, for each running task, kill all but the fastest α copies after∆ time has passed since begin
4: while slots are availabledo
5: if tasks are waiting for slotsthen
6: kill, restart task iftrem > E(tnew) + ∆, stop atγ restarts
7: duplicate ifP(trem > tnew

c+1
c

) > δ

8: start the waiting task that has the largest data to read
9: else ⊲ all tasks have begun

10: duplicate iffE(tnew − trem) > ρ∆
11: end if
12: end while

Pseudocode 1:Algorithm for Resource-aware restarts (simplified).

particular,Mantri does so whentrem > E(tnew) + ∆.5 To not thrash on inaccurate estimates,Mantri never kills a task
more thanγ = 3 times.

The “kill and restart” scheme drastically improves the job completion time without requiring extra slots as we
show analytically (§A). However, the current job scheduler incurs a queueing delay before a task is restarted. This
delay can be large and has a high variation. Hence, we consider scheduling duplicates.

Scheduling a duplicate results in the minimum completion time of the two copies and provides a safety net when
estimates are noisy or the queueing delay is large. However,it requires an extra slot and if allowed to run to finish,
consumes extra computation resource that will increase thejob completion time if outstanding tasks are prevented
from starting. Hence, when there are outstanding tasks and no spare slots, we schedule a duplicate only if the total
amount of computation resource consumed decreases. In particular, if c copies of the task are currently running, a
duplicate is scheduled only ifP(tnew < c

c+1 trem) > δ. By default,δ = .25. For example, a task with one running
copy is duplicated only iftnew is less than half oftrem. For stability,Mantri does not re-duplicate a task for which it
launched a copy recently. Any copy that has run for some time and is slower than the second fastest copy of the task
will be killed to conserve resources. Hence, the number of running copies of a task is never larger than3 6. On the
other hand, when spare slots are available, a duplicate is scheduled if the reduction in the job completion time is larger
than the extra resource consumed,E(tnew − trem) > ρ∆. By default,ρ = 3.

Mantri’s restart algorithm is independent of the values for its parameters. Settingγ to a larger andρ, δ to a smaller
value trades off the risk of wasteful restarts for the rewardof a larger speed-up. The default values err on the side of
caution.

By scheduling duplicates conservatively and pruning aggressively,Mantri has a high success rate of its restarts. As
a result, it reduces completion time and conserves resources ( §6.2).

5.2 Network-Aware Placement

Reduce tasks, as noted before (§4.2), have to read data across racks. A rack with too many reduce tasks is congested
on its downlink and such tasks will straggle. Figure11 illustrates such a scenario.

Mantri approximates the optimal placement that relieves congestion by the following greedy local algorithm. For a
reduce phase withn tasks running on a cluster withr racks, it takes the input matrixIn,r that specifies the size of input
available on a rack for each of the reduce tasks7. Note that the sizes of the map outputs in each rack are known to the
scheduler prior to placing the tasks of the subsequent reduce phase. For every permutation of reduce tasks allocated

5Since the median of the heavy tailed task completion time distribution is smaller than the mean, this check implies thatP (tnew < trem) >

P (tnew < E(tnew)) ≥ .5
6The fastest copy, the second fastest one and a copy that has recently been started.
7In I, the sum over rows in columni is the output of map phase output on theith rack, and the sum over columns in rowj is the size of data to

be read by thejth reduce task.

10



(a) (b)

Figure 11:Three reduce tasks (rhombus boxes) are to be placed across three racks. The rectangles indicate map output, written
out as three partitions, present in each of the racks. Each reduce task has to process one block of each type. An ad-hoc placement
on the left creates network bottlenecks on the cross-rack links (highlighted) causing tasks in such racks to straggle. If the network
were to have no other traffic, the even placement on the right avoids hotspots.

M1

M2

M0

t2redo = r2(t2 +t
1
redo)

…     

t0redo=r0t0

(a)

M1
orig
 

M2 

M1
replica

 

r1=r1
replica

*r1
orig
 

(b)

M11 M1n 

M2 

…. 

t1redo= 
max(t11redo, …t

1n
redo) 

(c)
replication 
cost 

recompute 
cost 

tredo > trep 
tredo 

trep 

In budget? 
yes yes 

replicate 

(d)

Figure 12:Avoiding costly recomputations: The cost to redo a task includes the recursive probability of predecessor tasks having
to be re-done (a). Replicating output reduces the effectiveprobability of loss (b). Tasks with many-to-one input patterns have high
recomputation cost and are more valuable (c). The time to replicate,trep is calculated based on the available rack-local bandwidth
and data is replicated only iftredo > trep.

across racks, let the data to be moved out (on the uplink) and read in (on the downlink) on theith rack bedi
u, di

v, and

the corresponding available bandwidths bebi
u andbi

d respectively. For each rack, compute two termsc2i−1 =
di

u

bi
u

and

c2i =
di

v

bi
d

. The first term is the ratio of outgoing traffic and available uplink bandwidth, and the second term is the ratio

of incoming traffic and available downlink bandwidth. The algorithm computes the optimal value over all placement
permutations that specifies the rack location for each task,asargmin maxj cj , j = 1, · · · , 2n,, by minimizing the
maximum data transfer time.

The available bandwidthsbi
u andbi

d change with time and as a function of other jobs in the cluster. Rather than
track the changes as an oracle could [28], Mantri estimates the bandwidths as follows. Reduce phases with a small
amount of data finish quickly, and the bandwidths can be assumed to be constant throughout the execution of the
phase. Phases with a large amount of data take longer to finish, and the bandwidth averaged over their long lifetime
can be assumed to be equal for all links. With these estimates, Mantri’s placement comes close to the ideal in our
experiments (see§6.4).

For phases other than reduce,Mantri complements the Cosmos policy of placing a task close to its data [14]. By
accounting for the cost of moving data over low bandwidth links in tnew , Mantri ensures that no copy is started at a

11



location where it has little chance of finishing earlier thereby not wasting resources.

5.3 Avoiding Recomputation

To mitigate costly recomputations that stall a job,Mantri protects against interim data loss by replicating task output.
Mantri acts early by replicating those outputs whose cost to recompute exceeds the cost to replicate.Mantri estimates
the cost to recompute as the product of the probability that the output will be lost and the time to repeat the task. The
probability of loss is estimated for a machine over a long period of time. The time to repeat the task istredo with
a recursive adjustment that accounts for the task’s inputs also being lost. The cost to replicate is the time to move
the data to another machine in the rack. Figure12 illustrates the calculation oftredo that tasks data loss probabilities
(ri’s), time taken by the tasks (ti’s) and recursively looks at prior phases. Replicating output reduces the likelihood
of recomputation to the case when all replicas are unavailable. If a task reads input from many tasks (e.g., a reduce),
tredo is higher since any of the inputs needing to be recomputed will stall the task’s recomputation. In Fig.12(c), we
assume that if multiple inputs are lost, they can be recomputed in parallel and the task is only stalled by the longest
input. Since the overall number of recomputes is small (Figure2) this is a fair approximation of practice.

In effect, the algorithm above replicates tasks at key places in a job’s workflow – when the cumulative cost of
not replicating many successive tasks builds up or when sometasks ran on very flaky machines (highri) or when the
output is so small that replicating it would cost little (lowtrep).

Further, to avoid excessive replication,Mantri limits the amount of data replicated to10% of the data processed by
the job. This limit is implemented by granting tokens proportional to the amount of data processed by each task. Task
output that satisfies the above cost-benefit check is replicated only if an equal number of tokens are available. Tokens
are deducted on replication.

Mantri proactively recomputes tasks whose output and replicas, ifany, have been lost. From§4, we see that re-
computations on a machine cluster by time, henceMantri considers a recompute to be the onset of a temporal problem
and that future requests for data on this machine will fail. Suchpre-computationdecreases the time that a dependent
task will have to wait for lost input to be regenerated. As before,Mantri imposes a budget on the extra cluster cycles
used for pre-computation. Together, probabilistic replication and pre-computation approximate the ideal scheme in our
evaluation (§6.5).

5.4 Data-aware Task Ordering

Workload imbalance causes tasks to straggle. In particular, given a set ofn tasks,s slots and data sizesd[1 · · ·n],
computing the optimal schedule that minimizes the job completion time is known to be NP-hard.Mantri improves job
completion time by scheduling tasks in a phase in descendingorder of their data size. If the optimal completion time
is TO, we know:

Theorem 1 T
TO

≤ 4
3 − 1

3s
. from [11]

This means that scheduling tasks with the longest processing time first is at most30% worse than the optimal.

5.5 Estimation of trem and tnew

Periodically, every running task informs the job schedulerof its status, including how many bytes it has read or written
thus far. Combining progress reports with the size of the input data that each task has to process,d, Mantri predicts
how much longer the task would take to finish as follows:

12



trem = telapsed ∗
d

dread

+ twrapup. (2)

The first term captures the remaining time to process data. The second term is the time to compute after all the
input has been read and is estimated from the behavior of earlier tasks in the phase. Tasks may speed up or slow down
and hence, rather than extrapolating from each progress report, Mantri uses a moving average. To be robust against
lost progress reports, when a task hasn’t reported for a while,Mantri increasestrem by assuming that the task has not
progressed since its last report.

Mantri estimatestnew, the distribution over time that a new copy of the task will take to run, as follows:

tnew = processRate∗ locationFactor∗ d + schedLag. (3)

The first term is a distribution of the process rate, i.e.,∆time
∆data

, of all the tasks in this phase. The second term is a
relative factor that accounts for whether the candidate machine for running this task is persistently slower (or faster)
than other machines or has smaller (or larger) capacity on the network path to where the task’s inputs are located. The
third term, as before, is the amount of data the task has to process. The last term is the average delay between a task
being scheduled and when it gets to run. We show in§6.2 that these estimates are sufficiently accurate forMantri’s
algorithms to function.

6 Evaluation

We deployed and evaluatedMantri on two of Bing’s clusters, a production cluster consisting of thousands of servers
and a smaller pre-production cluster. To compare against a wide range of alternate techniques, we built a trace driven
simulator that replays logs from production.

6.1 Setup

Clusters The production cluster consists of thousands of server-class multi-core machines with tens of GBs of RAM
that are spread roughly 40 servers to a rack. This cluster is used by Bing product groups. The data we analyzed earlier
is from this cluster, so the observations from§4 hold here. The pre-production cluster is a smaller bed with similar
machines and network. It is used to bake new releases and debug production code.

Workload In the pre-production cluster,Mantri was deployed for nine days as the default build for all jobs onthis
cluster. An internal test harness, independent of us, stress tests this cluster by issuing replicas of production jobs.Here,
we reportMantri’s performance on 202 jobs, each of which repeated over threetimes. We compare with runs of these
jobs that used the unmodified build.

In the production cluster, we evaluateMantri on four applications that represent common building blocks. Word
Countcalculates the number of unique words in the input.Table Joininner joins two tables each with three columns of
data on one of the columns.Group Bycounts the number of occurrences of each word in the file. Finally, grepsearches
for string patterns in the input. We vary input sizes from 53 GB to 500 GB.

Prototype Mantri builds on the Cosmos job scheduler and consists of about 1000lines of C++ code. To computetrem,
Mantri maintains an execution record for each of the running tasks that is updated when the task reports progress. A
phase-wide data structure stores the necessary statisticsto computetnew. When slots become available,Mantri runs
Pseudocode 1 and restarts or duplicates the task that would benefit the most or starts new tasks in descending order of
data size. To place tasks appropriately, name builds on the per-taskaffinity list, a preferred set of machines and racks
that the task can run on. At run-time the job manager attemptsto place the task at its preferred locations in random
order, and when none of them are available runs the task at thefirst available slot. The affinity list for map tasks has

13



machines that have replicas of the input blocks. For reduce tasks, to obtain the desired proportional spread across
racks (see§5.2), we populate the affinity list with a proportional number ofmachines in those racks.

Trace-driven Simulator The simulator replays the logs shown in Table2. It faithfully repeats the observed distribu-
tions of task completion time, data read by each task, size and location of inputs, probability of failures and fairness
based evictions. It mimics the job workflow, the numbers of tasks per phase, the input/output relationships, barriers
and cluster characteristics like machine failures and availability of computation slots. For the network, it uses a fluid
model rather than simulating individual packets. Doing thelatter, at petabyte scale, is out of scope for this work. On
a 12 node testbed where each node had 8 core 2.5 GHz Intel Xeon processors and 32GB of RAM the simulations
reported here took several weeks to complete.

Compared SchemesOur simulator comparesMantri with the outlier mitigation strategies in Hadoop [1], Dryad [12],
MapReduce [10] and LATE [20]. We further compare against a modified form of LATE that varies in one aspect; it
acts on stragglers early in the phase.

We also compareMantri against some ideal benchmarks.NoSkewmimics the case when all tasks in a phase take the
same amount of time.NoSkew + ChopTailremoves the worst quartile of durations, and sets every taskto the average
of remaining durations.IdealReduceassumes perfect up-to-date knowledge of available bandwidths and places reduce
tasks accordingly andIdealRecomputeuses future knowledge of which tasks will wait for their inputs to be recomputed
and acts to ensure that they do not happen.

Metrics As our primary metrics, we use the reduction in completion time and resource usage, where

Reduction=
Current− Modified

Current
. (4)

A reduction of 50% implies that the property in question, completion time or resources used, decreases by half.
Negative values of reduction imply that the modification uses more resources or takes longer.

Our results are summarized as follows:

• Mantri’s intelligent duplication and network-aware placement ofreduce phases reduced the completion times of
representative jobs/phases on the production cluster by anaverage of 25% and 28.4%.

• Simulations driven from production logs show thatMantri’s duplication reduces the completion time of phases
by 21% and 42% at 50th and 75th percentiles. Here,Mantri’s reduction in completion time improves on Hadoop
by 3.1x while using fewer resources than MapReduce, each of which are the current best on those respective
metrics.

• Mantri’s network-aware placement of tasks speeds up half of the reduce phases by at least 60% each.

• Mantri reduces the completion times due to recomputations of jobs that constitute 25% (or 50%) of the workload
by at least 40% (or 20%) each, consuming negligible extra resources.

6.2 Deployment Results

Straggler Mitigation Figure13 comparesMantri with the baseline Cosmos implementation for four jobs running
on the larger cluster. Each job was repeated twenty times with and withoutMantri. The histograms plot the average
reduction, error bars are the 10th and 90th percentiles of samples. We see thatMantri improves job completion times
by roughly 25%. Further, by terminating the largest stragglers early, resource usagefalls by roughly 10%. As we show
later in§6.3, this is because very few of the duplicates scheduled by the current mitigation scheme based on Dryad are
useful.

14



21.7

31.0
26.2

21.4
20

30

40

50
%

 R
e

d
u

ct
io

n
 i

n
 

C
o

m
p

le
ti

o
n

 T
im

e

0

10

20

%
 R

e
d

u
ct

io
n

 i
n

 

C
o

m
p

le
ti

o
n

 T
im

e

Word

Count

Table

Join

Group    

By

Grep

(a) Completion Time

13.4

20

30

40

%
 R

e
d

u
ct

io
n

 i
n

 

Jo
b

 R
e

so
u

rc
e

s

2.5

13.4

7.6 9.5

0

10

%
 R

e
d

u
ct

io
n

 i
n

 

Jo
b

 R
e

so
u

rc
e

s

Word

Count

Table

Join

Group    

By

Grep

(b) # Resource Usage

Figure 13:ComparingMantri’s straggler mitigation with the baseline implementation on a production cluster of thousands of
servers for the four representative jobs.

34.2 

19.2 

28.4 

7.0 

31.5 

12.6 

0

10

20

30

40

Phase Job

Max Min Average

 %
R

e
d

u
ct

io
n

 i
n

 

C
o

m
p

le
ti

o
n

 T
im

e
 

Figure 14:ComparingMantri’s network-aware spread of tasks with the baseline implementation on a production cluster of thou-
sands of servers.

40

60

80

100

C
D

F
 %

 J
o

b
 T

im
e

0

20

40

0 20 40 60 80 100

% Reduction in Completion Time

C
D

F
 %

 J
o

b
 T

im
e

(14.3%)

(a) Completion Time

40

60

80

100

C
D

F
 %

 J
o

b
 T

im
e

 

0

20

40

-50 -30 -10 10 30 50

C
D

F
 %

 J
o

b
 T

im
e

 

%Reduction in Job Resources
(b) # Resource Usage

Figure 15:Evaluation ofMantri as the default build for all jobs on a pre-production clusterfor nine days.

To micro-benchmarkMantri’s estimators, we logged progress reports from these production runs. We find that
Mantri’s predictor, based on reports from the recent past, estimatestrem to within a 2.9% error of the actual completion
time. From the results above, we see that this accuracy suffices to see practical gains.

Placement of TasksTo evaluateMantri’s network-aware spreading of reduce tasks, we ranGroup By, a job with a
long-running reduce phase, ten times on the larger cluster.Figure14shows an average reduction in completion time of
the reduce phase of 28.4% with a maximum of 34%. Overall, the job speeds-up by an average of 12.6%. To understand
why, we measure thespreadof tasks, i.e., the ratio of the number of concurrently running tasks to the number of racks
they are running in. High spread value means some racks are congested, causing their tasks to straggle, while other
racks are idle. The spread forMantri is 1.5 compared to 5.5 for the default implementation.

15



40

60

80

100

Dryad

Hadoop

LATE

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

-20 0 20 40 60 80 100

LATE

MapReduce

Mantri

C
D

F
 %

 P
h

a
se

 

% Reduction in Completion Time
(a) Change in Completion Time

40

60

80

100

Dryad

Hadoop

LATE

MapReduce

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

-40 -20 0 20 40 60 80 100

MapReduce

Mantri

C
D

F
 %

 P
h

a
se

 

% Reduction in Resource Usage
(b) Change in Resource Usage

Figure 16:Comparing straggler mitigation strategies.Mantri provides a greater speed-up in completion time while using fewer
resources than existing schemes.

Jobs in the Wild All the jobs submitted to the pre-production cluster ran with Mantri for a nine day period. We
compare these job runs with earlier runs of the same jobs thatran with the unmodified build. Figure15(a)plots the
CDF of the net improvement in completion times of 202 jobs. Jobs that occupy the cluster for half the time sped up
by at least 14.3%. We see larger gains on the benchmark jobs inthe production cluster and in trace driven simulations.
This is perhaps because, the pre-production being lightly loaded has fewer outliers and hence, less room forMantri to
improve. Figure15(b)also shows that 60% of jobs see areductionin resource consumption while the others use up a
few extra resources.

To compare against alternative schemes and to piece apart gains from the various algorithms inMantri, we present
results from the trace-driven simulator.

6.3 CanMantri mitigate stragglers?

Figure16compares straggler mitigation strategies in their impact on completion time and resource usage. The y-axes
weighs phases by their lifetime since improving the longer phases improves cluster efficiency. The figures plots the
cumulative reduction in these metrics over each of the 210K phases in Table2 with each phase repeated 3 times.

Figures16(a)and16(b)show thatMantri improves completion time by 21% and 42% at the 50th and 75th per-
centiles and reduces resource usage by 3% and 7% at these percentiles. Results from simulation are consistent with
those from our production deployment (§6.2). We attribute these gains to the combination ofearly actionandcause-
awarerestarts.

From Figure16(a), at the 50th percentile,Mantri sped up phases by 21.1%, an additional 3.1X over the 6.9%
improvement of Hadoop, the next best scheme. To achieve thisHadoop uses 15.9% more resources ( Fig.16(b)).

MapReduce and Dryad have no positive impact until the 80th and 50th percentile respectively. Up to the 30th
percentile Dryad increases the completion time of phases. LATE is similar in its time improvement to Hadoop but
does so using fewer resources.

The reason for poor performance is that they miss outliers that happen early in the phase and by not knowing
the true causes of outliers, the duplicates they schedule are mostly not useful.Mantri and Dryad schedule .2 restarts
per task for the average phase (.06 and .56 for LATE and Hadoop). But, Mantri’s restarts have a success rate of 70%
compared to the 15% for LATE. The other schemes have lower success rates.

While the insight ofearly actionon stragglers is valuable, it is nonetheless non trivial. Weevaluate this in Fig-
ures17(a)and17(b)that present a form of LATE that is identical in all ways except that it addresses stragglers early.
We see that addressing stragglers early increases completion time up to the 40th percentile, uses more resources and
is worse than vanilla LATE. Being resource aware is crucial to get the best out of early action (§5.1).

16



40

60

80

100

LATE + Early

P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-20 -10 0 10 20 30 40

LATE + Early

LATE

C
D

F
 %

 P
h

a
se

 

% Reduction in Completion Time
(a) Time

40

60

80

100

LATE

LATE + Early

P
h

a
se

 D
u

ra
ti

o
n

0

20

-20 -10 0 10 20 30 40

% Reduction in Resource Usage

C
D

F
 %

 P
h

a
se

 

(b) Resources

Figure 17:Extending LATE to speculate early results in worse performance

40

60

80

100
NoSkew

NoSkew + ChopTail

Mantri

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-10 0 10 20 30 40 50

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

% Reduction in Completion Time
(a) Time

40

60

80

100

NoSkew + ChopTail

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

% Reduction in Resource Usage

0

20

40

-10 0 10 20 30 40 50

NoSkew + ChopTail

NoSkew

Mantri

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

(b) Resources

Figure 18:Mantri is on par with an idealNoSkewbenchmark and slightly worse thanNoSkew+ChopTail(see end of§6.3)

40

60

80

100 Start

Equal

Mantri

IdealReduce

P
h

a
se

 D
u

ra
ti

o
n

0

20

40

0 20 40 60 80 100

% Reduction in Completion Time

C
D

F
 %

P
h

a
se

 

(59.1%)

Figure 19:Compared to the current placement,Mantri’s network aware placement speeds up the median reduce phaseby 60%.

Finally, Fig.18 shows thatMantri is on par with the ideal benchmark that has no variation in tasks, NoSkew, and
is slightly worse than the variant that removes all durations in the top quartile,NoSkew+ChopTail. The reason is that
Mantri’s ability to substitute long running tasks with their faster copies makes up for its inability to act with perfect
future knowledge of which tasks straggle.

6.4 DoesMantri improve placement?

Figure19 plots the reduction in completion time due toMantri’s placement of reduce tasks as a CDF over all reduce
phases in the dataset in Table2. As before, the y-axes weighs phases by their lifetime. The figure shows thatMantri
provides a median speed up of 60% or a 2.5X improvement over the current implementation, vindicating our choice
of monitoring and judiciously using the available resources (network bandwidths).

The figure also comparesMantri against strategies that estimate available bandwidths differently. TheIdealReduce
strategy tracks perfectly the changes in available bandwidth of links due to the other jobs in the cluster. TheEqual

17



20

40

60

80

100

Dryad

Mantri

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

1 6 11 16 21 26 31

Mantri

Ratio of median to slowest    

read throughputs of tasks

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

Figure 20: Ratio of median to the slowest throughput
among tasks in every reduce phase, with placement policies
of Mantri and Dryad.

40

60

80

100

Mantri

IdealRecomputeJo
b

 D
u

ra
ti

o
n

0

20

0 20 40 60 80 100

IdealRecompute

% Reduction in Completion Time

C
D

F
 %

Jo
b

 

Figure 21:By probabilistically replicating task output and
recomputing lost data before it is neededMantri speeds up
jobs by an amount equal to the ideal case of no data loss.

strategy assumes that the available bandwidths are equal across all links whereasStart assumes that the available
bandwidths are the same as at the start of the phase. We see a partial order betweenStartandEqual. Short phases are
impacted by transient differences in the available bandwidths andStart is a good choice for these phases. However,
these differences even out over the lifetime of long phases for whomEqualworks better.Mantri is a hybrid ofStart
andEqual. It achieves a good approximation ofIdealReducewithout re-sampling available bandwidths.

To capture howMantri’s placement differs from Dryad, Figure20plots the ratio of the throughput obtained by the
median task in each reduce phase to that obtained by the slowest task.Mantri’s network aware placement, based on
the available bandwidths and data transfer patterns, ensures that in the median reduce phase, the slowest throughput
experienced by a task is about 5% lower than the median. This ratio never exceeds 2. Dryad’s policy of placing tasks at
the first available slot causes outliers– the ratio of the median throughput to the slowest is 5.25 (or 14.33) at the 50th (or
75th) percentile. Duplicating the tasks that were delayed due toreading across congested links without considering
available bandwidths would not have helped.

6.5 DoesMantri help with recomputations?

The best possible protection against loss of output would (a) eliminate all the increase in job completion time due
to tasks waiting for their inputs to be recomputed and (b) do so with little additional cost.Mantri approximates both
goals. Fig.21shows that by selectively replicating tasks that are more likely to have their inputs corrupted (by noting
their cause - problematic machines) and early action to pre-compute data that has already been lost,Mantri achieves
parity with IdealRecompute. Recall that IdealRecompute has perfect future knowledge of loss. The improvement in
job completion time is 20% and 40% at the 50th and 75th percentiles.

As supporting evidence, Figure22shows thatMantri is successful in eliminating most of the recomputations. 78%
of the median job’s recomputations are eliminated. Though some jobs have only a small fraction of their recomputes
eliminated (the bottom 5% of the phases),Mantri’s policy to protect the output of tasks that are more expensive to
recompute lets it reach parity with IdealRecompute. Figure22 also shows the individual contributions from repli-
cation and pre-computation; they contribute roughly two-third and one-third towards the eliminated recomputations,
complementing each other.

Fig.23(a)shows that the extra network traffic due to replication is (overall negligible and) comparable to a scheme
that has perfect future knowledge of which data is lost and replicates just that data.Mantri sometimes replicates more
data than the ideal, and at other times misses some tasks thatshould be replicated. Fig.23(b)shows that speculative
recomputations take no more than a few percentage extra cluster resources.

The reason for improvements with low overhead isMantri’s accurate prediction of cause and resource cognizant
decisions. The probability that task output that was replicated will be used, because the original data becomes un-

18



40

60

80

100 Pre-computation

Replication

Mantri

C
D

F
 %

 J
o

b
 D

u
ra

ti
o

n

0

20

40

0 20 40 60 80 100

(78%)(53%)(25%)

% Recomputes Eliminated
C

D
F

 %
 J

o
b

 D
u

ra
ti

o
n

Figure 22:Fraction of recomputations that are eliminated due toMantri’s recomputation mitigation strategy, along with individual
contributions from replication and pre-computation.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Replication

IdealRecompute

  
  

  
  

 C
D

F
 %

 o
f 

T
o

ta
l 

T
ra

ff
ic

 

Increase in Traffic (%) 

(a) Cost: Network Traffic

40

60

80

100

C
lu

st
e

r 
R

e
so

u
rc

e
s

0

20

40

0 0.5 1 1.5 2 2.5 3

Increase in Cluster Resource(%)
C

D
F

 %
 C

lu
st

e
r 

R
e

so
u

rc
e

s

(b) Cost: Cluster Time

Figure 23: The cost to protect against recomputes is fewer than a few percentage points in both the extra traffic on the network
and cluster time for speculative recomputation.

available, is 84%. Similarly, the probability that a task that was pre-computed becomes necessary, because the original
data remains unavailable when it is needed for the subsequent task, is 76%. If pre-computations are triggered when
two recomputations happen at a machine in quick succession,rather than one, this success rate increases to 93%. We
consider the high success rate as a validation of our estimation of tredo and the prediction of the onset of failure.

7 Related Work

Outliers inevitably occur in systems that compete for a share of resource pools [29], of which mapreduce is one
example. OpenDHT [24] and MONET [4] reported outliers over planetlab and wide-area Internet respectively.

Much recent work focuses on large scale data parallel computing. Following on the map-reduce [10] paper, there
has been work in improving workflows [1, 12], language design [7, 21, 31], fair schedulers [13, 32], and providing
privacy [25]. Our work here takes the next step of understanding how suchproduction clusters behave and can be
improved.

Run-time stragglers have been identified by past work [1, 10, 15, 20]. However, this paper is the first to characterize
the prevalence of stragglers in production and their various causes. By understanding the causes, addressing stragglers
early and scheduling duplicates only when there is a fair chance that the speculation saves both time and resources,
our approach provides a greater reduction in job completiontime while using fewer resources than prior strategies that
duplicate tasks towards the end of a phase. Also, we uniquelyavoid network hotspots and protect against loss of task
output, two further causes of outliers.

By only acting at the end of a phase, current schemes [1, 10, 12] miss early outliers. They vary in the choice of
which among the tasks that remain at the end of a phase to duplicate. After a threshold number of tasks have finished,
MapReduce [10] duplicates all the tasks that remain. Dryad [12] duplicates those that have been running for longer

19



than the 75th percentile of task durations. After all tasks have started, Hadoop [1] uses slots that free up to duplicate
any task that has read less data than the others, while Late [20] duplicates only those reading at a slow rate.

Further, current approaches [1, 10, 12] only duplicate tasks except for Late [20] which also stops using persistently
slow machines. Logs from the production cluster (§4) show that persistent slowness occurs rarely and duplicates do
not counter most of the causes of outliers, e.g., those that do a lot of work.

Though some recent proposals do away with capacity over-subscription in data centers [3, 18], today’s networks
remain over-subscribed albeit with smaller ratios than those in the past. It is common to place tasks near their in-
put (same machine, rack etc.) for map and at the first free slotfor reduce [1, 10, 12]. Our approach to eliminate outliers
by a network-aware placement is orthogonal to recent work that picks tasks requiring different resources on to a ma-
chine [27], or trades-off fairness with efficiency [13]. In particular, Quincy accounts for capacity but not for runtime
variations in bandwidth due to competition from other tasks.

Addressing loss of intermediate data is of recent focus. ISS[16] protects intermediate data by replicating locally-
consumed data, i.e., the output of reduce tasks. ISS’s replication strategy runs the risk of being both wasteful (very
few machines are error-prone) as well as insufficient (when map tasks are long). In contrast, we analyze the magnitude
and origin of the problem with real traces and present a broader solution that replicates output of any task based on the
probability of data loss and speculatively precompute outputs that are already lost.

The MapReduce paradigm is similar to parallel databases in its goal of analyzing large data [23] and to dedi-
cated HPC clusters or parallel programs [17] by presenting similar optimization opportunities. In these contexts, task
scheduling and duplication have been studied for multiple processors [5, 26]. Notably, Star-MPI [2] adapts placement
of parallel MPI programs by observing performance over time. Research has also focused on modeling and optimizing
the communication in parallel programs [9, 19, 22] that have one-to-all or all-to-all traffic, i.e., where every receiver
cares for all of the input. The many-to-many traffic typical of mapreduce is different from these patterns and leads to
different optimizations.

8 Conclusion

Mantri delivers effective mitigation of outliers in map-reduce networks. It is motivated by, what we believe is, the first
study of a large production map-reduce cluster. The root ofMantri’s advantage lies in integrating static knowledge of
job structure and dynamically available progress reports into a unified framework that identifies outliers early, applies
cause-specific mitigation and does so only if the benefit is higher than the cost. In our implementation on a cluster of
thousands of servers, we findMantri to be highly effective.

Outliers are an inevitable side-effect of parallelizing work. They hurt map-reduce networks more due to the struc-
ture of jobs as graphs of dependent phases that pass data fromone to the other. Their many causes reflect the interplay
between the network, storage and, computation in map-reduce. Current systems shirk this complexity and assume that
a duplicate would speed things up.Mantri embraces it to mitigate a broad set of outliers.

Acknowledgments

We would like to thank David Aldous, Duke Harlan, Yuxiong He,Patrick Helland, Mosha Pasumansky and Jingren
Zhou for feedback on drafts of this paper. Alexei Polkhanov and Juhan Lee were invaluable in taking Mantri to
production clusters.

The opinions expressed here are personal opinions of the authors and do not necessarily represent those of em-
ployers or other funding sources.

20



References
[1] Hadoop distributed filesystem.http://hadoop.apache.org.
[2] A. Faraj, X. Yuan, D. Lowenthal. STAR-MPI: Self Tuned Adaptive Routines for MPI Collective Operations. InInternational

Conference on Supercomputing, 2006.
[3] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible

Data Center Network. InSIGCOMM, 2009.
[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Rao. Improving web availability for clients with monet. InNSDI,

2005.
[5] B. Ucar, C. Aykanat, K. Kaya, M. Ikinci. Task assignment in heterogeneous computing systems. InJournal of Parallel and

Distributed Computing, 2006.
[6] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An analysis of data

corruption in the storage stack. InFAST, 2008.
[7] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel

Processing of Massive Datasets. InVLDB, 2008.
[8] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmleegy, and R. Sears. Mapreduce online. InNSDI, 2010.
[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, T. V. Eicken. LogP: Towards a

Realistic Model of Parallel Computation. InSIGPLAN PPoPP, 1993.
[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. InOSDI, 2004.
[11] R. L. Graham. Bounds on multiprocessing timing anomalies.SIAM Journal on Applied Mathematics, 17(2):416–429, March

1969.
[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-parallel Programs from Sequential Building

Blocks. InEurosys, 2007.
[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy: Fair scheduling for distributedcomputing

clusters. InSOSP, 2009.
[14] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The Nature of Datacenter Traffic: Measurements and

Analysis. InIMC, 2009.
[15] S. Ko, I. Hoque, B. Cho, and I. Gupta. On Availability of Intermediate Data in Cloud Comput. InHotOS, 2009.
[16] S. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud intermediate data fault-tolerant. InSOCC, 2010.
[17] A. Krishnamurthy and K. Yelick. Analysis and optimizations for shared address space programs.Journal of Parallel and

Distributed Computation, 1996.
[18] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center Network Architecture. InACM SIGCOMM,

Aug 2008.
[19] M. Lauria and A. Chien. MPI-FM: High Performance MPI on Workstation Clusters. InJournal on Parallel and Distributed

Computing, 1997.
[20] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica. Improving MapReduce Performance in Heterogeneous Environ-

ments. InOSDI, 2008.
[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A Language for Data Processing. InSIGMOD,

2008.
[22] P. Patarasuk, A. Faraj, X. Yuan. Pipelined Broadcast onEthernet Switched Clusters. InIEEE IPDPS, 2006.
[23] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,S. R. Madden, and M. Stonebraker. A comparison of approachesto

large scale data analysis. InSIGMOD, 2009.
[24] S. Rhea, B.-G. Chun, J. Kubiatowicz, and ScottShenker.Fixing the embarrassing slowness of opendht on planetlab. In

WORLDS, 2005.
[25] I. Roy, S. T. Shetty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat: Security and privacy for mapreduce. InNSDI, 2010.
[26] S. Manoharan. Effect of task duplication on assignmentof dependency graphs. InParallel Comput., 2001.
[27] T. Sandholm and K. Lai. Mapreduce optimization using regulated dynamic prioritization. InSIGMETRICS, 2009.
[28] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and D. G. Andersen. Csamp: A system for network-wide

flow monitoring. InNSDI, 2008.
[29] D. Wischik, M. Handley, and M. B. Braun. The resource pooling principle.

21

http://hadoop.apache.org


0 5 10 15 20
10

−15

10
−10

10
−5

10
0

completion time, r

P
ro

ba
bi

lit
y

 

 

original distribution
P(R>r)
distribution with reduced
tail  P(R’>r)

t
k
=11

Figure 24:Comparing a heavy-tailed task completion time distribution (β = 1.1) with the eventual distribution after long tasks
are killed and re-started (tk = 11, ts = 10), see§A.

www.cs.ucl.ac.uk/staff/D.Wischik/Research/respool.html.
[30] Y. Yu, P. K. Gunda, and M. Isard. Distributed Aggregation for Data-Parallel Computing: Interfaces, Impl. InSOSP, 2009.
[31] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.K. Gunda, and J. Currey. DryadLINQ: A System for General-Purpose

Data-Parallel Computing Using a Language. InOSDI, 2008.
[32] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Job scheduling for multi-user mapreduce

clusters. Technical Report EECS-2009-55, UCBerkeley.

A Analysis: Chopping the heavy tail

Consider “kill and restart”§5.1. Suppose the task completion time distributionR is heavy tailed, such that

P(R > r) = r−β , β > 1, r ≥ 1.

Let ts = tk−∆. Given some technical conditions ontk which is satisfied by settingtk = ER+∆, the task completion
time after “kill and restart”R′ satisfies this proposition:

Proposition 1

P(R′
> r) ≤

(

P(R > r) = r−β, for r < tk

P(R > t
( r−ts

∆
−1)

s tk) = (t
( r−ts

∆
−1)

s tk)−β , o/w.
(5)

This means that the new distribution is dominated by the original distribution below the threshold to killtk, and has
only an exponential tail above the threshold. The proof is inthe Appendix. Fig.24compares the two distributions.

Due to the smaller variation, the job completion time decreases. Let the job completion time before and after be
T , T ′. Recall thatn, s are the numbers of tasks and slots.

Proposition 2

E(T − T
′) ≥ max

„

E( max
1≤i≤n

Ri),
n

s
ER

«

− E( max
1≤i≤n

R
′
i) −

n

s
ER

′
,

where each term is evaluated given the distributionR′ specified in Proposition1.

To understand what this means, suppose∆ = 1, ts = ER andtk = ER + 1. For different values of the number of
tasks, slots and heavy-tail exponent (n, s, β), we empirically estimate the the percentage reduction in job completion
time, E(T−T ′)

ET
. Table3 shows that whenβ = 2, which is a moderately heavy tail, chopping the tail via restarting leads

to atleast a 59% speed up in job completion.
Proof for Proposition 1. For r < tk, P(R < r) ≤ P(R′ < r) since tasks less thanr remain, and tasks greater

thantk can become less thanr.

22

www.cs.ucl.ac.uk/staff/D.Wischik/Research/respool.html


β n s time reduction

1.1 200 100 99%

1.5 200 100 91%

1.5 100 50 86%

2 100 50 59%

Table 3:Reduction in job completion time.

Forr > tk, we need

P(R′
> r, R < r) < P(R′

< r,R > r) ∀r ≥ tk. (6)
Observe that forR > tk, if one of the⌊ r−ts

∆ ⌋ restarts succeeds,R′ ≤ ts + ∆ · r−ts

∆ = r. HenceP(R′ > r|R <

r) ≤ t
−

β(r−ts−∆)
∆

s . Similarly, P(R′ < r|R > r) ≥ 1 − t
−

β(r−ts−∆)
∆

s .
We derive the condition for (6) to hold.

t
−

β(r−ts−∆)
∆

s P(tk < R < r) ≤ (1 − t
−

β(r−ts−∆)
∆

s )P(R > r)

t
−

β(r−ts−∆)
∆

s (t−β

k − r
−β) ≤ (1 − t

−
β(r−ts−∆)

∆
s )r−β

t
( r−ts

∆
−1)

s ≥
r

tk

∀ r ≥ tk (7)

Evaluating (7) and its gradient atr = tk, we obtain thattr > 1 andtk ≥ max(∆/ log tr, tr + ∆) is sufficient.
Hence, forr ≥ t,

P(R′
> r) = (t

( r−ts
∆

−1)
s tk)−β = P(R > t

( r−ts
∆

−1)
s tk).

Proof for Proposition 2. We need the following lemmas regarding the job completion time,T . Assume there ares
slots and a total ofn tasks with sizesxi, i = 1, · · · , n.

Lemma 1 T ≥ maxi xi.

Lemma 2 T ≥ 1
m

∑

i xi.

With the policy that a task is assigned whenever a slot is idle,

Lemma 3 T ≤ maxi xi + 1
m

∑

i xi

Proposition2 follows from lower bounds forT and upper bound forT ′.

23


	Introduction
	Background
	The Outlier Problem
	Outliers in a Phase
	Extending from a phase to a job
	Illustration of Outliers

	Quantifying the Outlier Problem
	Prevalence of Outliers
	Causes of Outliers
	Impact of Outliers

	Mantri Design
	Resource-aware Restart
	Restart Algorithm

	Network-Aware Placement
	Avoiding Recomputation
	Data-aware Task Ordering
	Estimation of trem and tnew

	Evaluation
	Setup
	Deployment Results
	Can Mantri mitigate stragglers?
	Does Mantri improve placement?
	Does Mantri help with recomputations?

	Related Work
	Conclusion
	Analysis: Chopping the heavy tail

