Reining in the Outliers in Map-Reduce Clusters using Mantri

Ganesh Ananthanarayanan Srikanth Kandula Albert Greenberg lon Stoica
Microsoft Research/UC Berkeley = Microsoft Research Microsoft Research UC Berkeley

Yi Lu Bikas Saha Edward Harris
Microsoft Research Microsoft Bing Microsoft Bing
June 2010

Technical Report
MSR-TR-2010-69

Experience from an operational map-reduce cluster revkatsoutliers significantly prolong job com-
pletion. The causes for outliers include (i) machine charistics - both hardware reliability (e.g., disk
failures) as well as run-time contention for processor, mgnand other resources, (ii) network char-
acteristics with varying bandwidths and congestion aloatlg, and (iii) imbalance in workload among
tasks. We presemantri, a system that monitors tasks and culls outliers usagse-andresource-aware
techniquesMantri’'s strategies include smart restart of outliers, netwosks@ placement of tasks and
protecting outputs of valuable task@antri’s principled strategy of dealing with outliers is a sigrdit
advancement over prior work that concentrate only on dapiig tasks. Using real-time progress reports,
Mantri detects outliers early in their lifetime, and takes appiadpraction based on their causes. Early ac-
tion frees up resources that can be used by subsequent tabks@edites the job overall. Deployment in
Bing’s production cluster and extensive trace-driven $ation indicate thamantri is 3.1x more effective
than the existing state-of-the-art in improving job contiple times.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://ww. research. m crosoft.com

1 Introduction

In a very short time, MapReduce has become the dominantiganddr large data processing on compute clusters.
Software frameworks based on MapReducdp, 12] have been deployed on tens of thousands of machines to-imple
ment a variety of applications, such as building searchceglirecommendation engines, optimizing advertisements,
and mining social networks.

While highly successful, MapReduce clusters come withrtbein set of challenges. One such challenge is the
often unpredictable performance of the MapReduce jobsbAgmsists of a set of tasks which are organized in phases.
Tasks in a phase depend on the results computed by the tagles pnevious phase and can run in parallel. When a
task takes longer to finish than other similar tasks, thestaskhe subsequent phase are delayed. At key points in the
job, a few sucloutlier tasks can prevent the rest of the job from making progredd€Tadefines the terms). As the
size of the cluster and the size of the jobs grow, the impaoudifers increases dramatically. Addressing the outlier
problem is critical to speed up job completion and improwsstdr efficiency.

Even a few percent of improvement in the efficiency of a clustnsisting of tens of thousands of nodes can
save millions of dollars a year. In addition, finishing protian jobs quickly is a competitive advantage. Doing so
predictably allows SLAs to be met. In iterative modify/ dgbanalyze development cycles, the ability to iterate faste
improves programmer productivity.

In this paper, we characterize the impact and causes ofoutliy measuring a large MapReduce production
cluster. This cluster is up to two orders of magnitude latgan those in previous publicatioris [L2, 20] and exhibits
a high level of concurrency due to many jobs simultaneousiying on the cluster and many tasks on a machine. We
find that variation in completion times among functionaliyp#ar tasks is large and that outliers inflate the completio
time of jobs by34% at median.

We identify three categories of root causes for outliers &n@ induced by the interplay between storage, network
and structure of map-reduce jobs. Firechine characteristicdictate the performance of tasks. These include static
aspects such hardware reliability (e.g., disk failures) dynamic aspects such as contention for processor, memory
and other resources. Secometwork characteristicaffect the data transfer rates of tasks. Datacenter nesaamek
over-subscribed leading to variance in congestion amadifeyeint paths. Finally, the specifics of MapReduce leads to
imbalancein work among tasks. For example, a partitioning of data eMezy space with low entropy leads to skews
among tasks in input sizes.

We presenMantri, 1 a system that monitors tasks and culls outliers based ondhases. It uses the following
algorithms: (i) Restarting outlier tasks cognizant to rese constraints and work imbalances, (ii) Network-aware
placement of tasks, and (iii) Protecting output of tasksedam a cost-benefit analysis.

The detailed analysis and decision process employekidnyri is a key departure from the state-of-the-art for
outlier mitigation in map-reduce implementatiod®[12, 20]; these focus only on duplicating tasks. To our knowl-
edge, none of them protect against data loss induced redatigns or network congestion induced outlieviantri’s
placement of tasks is cognizant to the congestion in thear&vDn a task’s completion, its output is replicated if the
benefit of not having to recompute outweighs the cost of cafilig.

Further,Mantri performs intelligent restarting of outliers. A task thahsufor long because it has more work to
do will not be restarted; if it lags due to reading data ovenva-bandwidth path, it will be restarted only if a more
advantageous network location becomes available. Unlikeent approaches that duplicate tasks only at the end of
a phaseMantri uses real-time progress reports to act early. While eatipmon outliers frees up resources that
could be used for pending tasks, doing so is nontrivial. Alidape may finish faster than the original task but has the
opportunity cost of using up an extra unit of resource thiaeopending work could have used.

1From Sanskrit, a minister who keeps the king’s court in order

Term Description

Task Atomic unit of computation with a fixed input

Phase A collection of tasks that can run in parallel,
e.g., map, reduce

Outlier A task that takes longer to finish compared to

other tasks in the phase

Workflow | A directed acyclic graph denoting how data
flows between phases

Job An execution of the workflow

Table 1:Definitions of terms used in this paper.

Some of these outlier causes are known in the high perforenand parallel computing communitg, [5]. How-
ever, the comprehensive formulation, relative break-dofaaontribution from each cause and a unified solution in the
context of map-reduce is novel.

In summary we make the following contributions. First, weypde an analysis of the causes of outliers in a large
production MapReduce cluster. Second, we devBlanri, that takes early actions based on understanding the causes
and the opportunity cost of actions. Finally, we perform gtemsive evaluation dflantri and compare it to existing
solutions.

By deploying aMantri prototype on a production cluster, of thousands of sertieas supports Bing and replaying
several thousand jobs collected on this cluster in a simylate show that:

e Mantri reduces the completion time of jobs by 20% on average on theugtion clusters. Extensive simulations
show that job phases are quicker by 21% and 42% at the 50thshgh&rcentiles. Its median reduction in comple-
tion time improves on the next best scheme3blyx while using fewer resources.

e By placingreducetasks to avoid network hotspotdantri improves the completion times of the reduce phases by
60%.

e By preferentially replicating the output of tasks that arerenlikely to be lost or expensive to recomputantri
speeds up half of the jobs by at le@st% each, with onlyl % increase in network traffic.

2 Background

We monitored the cluster and software systems that supgp®Bing search engine for over twelve months. This is a
cluster of tens of thousands of commaodity servers managétbisynos, a proprietary upgraded form of Dryad][
Despite some differences, implementations of map-redydd[12] are broadly similar.

While programmers can write native code, most of the jobsitnexamined cluster are written in Scofg
mash-up language that mixes SQL-like declarative statesneith user code. The Scope compiler transforms a job
into a workflow— a directed acyclic graph where each node isas® and each edge joins a phase that produces data
to another that uses it. A phase is a set of one or more tasksithan parallel and perform the same computation on
different parts of the input stream. Typical phases are megjoice and join. Compiler optimizations can merge differen
functionality into one phase or divide functionality acsghases. The number of tasks in a phase is chosen at compile
time. A task will read its input over the network if it is notailable on the local disk but outputs are written to the local
disk. The eventual outputs of a job (as well as raw data) aredtn a reliable block storage system implemented on
the same servers that do computation. Blocks are replicatealy’s for reliability. A run-time scheduler assigns task
to machines, based on data locations, dependence pattetrictuater-wide resource availability. The network layout
is such that there is more bandwidth within a rack than acardss.

We obtain detailed logs from the Scope compiler and the Cessnbeduler. At each of the job, phase and task
levels, we record the execution behavior as represente@diy land end times, the machines(s) involved, the sizes

Dates Phases| Jobs | Compute | Data | Network

x 103 (years) | (PB) (PB)
May 25,26 | 19.0 938 49.1 12.6 .66
Jun 16,17 16.5 991 88.0 22.7 1.22
Jul 20,21 22.0 1183 51.6 14.3 .67
Aug 20,21 29.2 1873 60.6 18.7 .76
Sep 15,16 27.4 1653 73.0 22.8 .73
Oct 15,16 20.4 1362 84.1 25.3 .86
Nov 16,17 37.8 1834 88.4 25.0 .68
Dec 10,11 18.7 1777 96.2 18.6 72
Jan 11,12 24.4 1842 79.5 21.5 1.99

Table 2:Details of the logs from a production cluster consistinghofitsands of servers.

of input and output data, the fraction of data that was readsacracks and a code denoting the success or type of
failure. We also record the workflow of jobs. Taldléepicts the random subset of logs that we analyze here. 8gann
eighteen days, this dataset is at least one order of magnauger than prior published data along many dimensions,
e.g., number of jobs, cluster size.

3 The Outlier Problem

We begin with a first principles approach to the outlier penb) then analyze data from the production cluster to
guantify the problem and obtain a breakdown of the causesttécs §4). Beginning at the first principles motivates
a distinct approach;b), which as we show i§6 significantly improves on prior art.

3.1 Outliersin a Phase

Assume a phase consistsiotasks and has slots.? On our cluster, the median ratio éfis 2.11 with a stdev of
12.37. The goal is to minimize the phase completion time, the time when the last task finishes.

Based on data from the production cluster, we megdehe completion time of task as a function of the size of
the data it processes, the code it runs, the resourceslaeaila the machine it executes and the bandwidth available

on the network paths involved: t; — (datasizecode machinenetwork) . 1)

Large variation exists along each of the four variablesitggatb considerable difference in task completion times.
The amount of data processed by tasks in the same phase, wanestimes widely, due to limitations in dividing
work evenly. The code is the same for tasks in a phase, betrsgli§ignificantly across phasesd, map and reduce).
Placing a task on a machine that has other resource hungsyitdkates completion time, as does reading data across
congested links.

In the ideal scenario, where every task takes the same arobtinte, sayT, scheduling is simple. Any work-
conserving schedule would complete the phaséﬂgﬂ X T) . When the task completion time varies, however, a

naive work-conserving scheduler can take u;(%;— + max ti). A large variation int; increases the termmax ¢;

and manifests as outliers.

The goal of a scheduler is to minimize the phase completioe ind make it closer tgs—t Sometimes, it can
do even better. By placing tasks at less congested machimetwork locations, thé;’s themselves can be lowered.
The challenge lies in recognizing the aspects that can begeliband scheduling accordingly.

2Slot is a virtual token, akin to a quota, for sharing clustesources among multiple jobs. One task can run per slot mtea ti

File = Extract 2% z=4 Partition 13 g Aggregate >'X o=

Syste
Barrier

(a) Partial workflow with the number of tasks in each phase

Extract |
Partition - - - - |
Aggregate

Running Tasks
(Normalized by max in phase)

R & R

0.1 0.2 0.3 0.4 0.5
Time (Normalized by Job Lifetime)

(b) Time lapse of task execution (R=Recomputes, B=Batrrier)

Figure 1:An example job from the production cluster

3.2 Extending from a phase to a job

The phase structure of map-reduce jobs adds to the vatyalditi outlier in an early phase, by delaying when tasks
that use its output may start, has cumulative effects onatheAt barriersin the workflow, where none of the tasks in
successive phase(s) can begin until all of the tasks in #eepiing phase(s) finish, even one outlier can bring the job to
a standstilP. Barriers occur primarily due to reduce operations thanaither commutative nor associatih&d], for
instance, a reduce that computes the median of recordsabatie same key. In our cluster, the median job workflow
has eight phases and eleven edges, 47% are barriers (nuiebges exceeds the number of phases due to table joins).

Dependency across phases also leads to outliers when tgskt @ulost and needs to hecomputedData loss
happens due to a combination of disk errors, software efeogs bugs in garbage collectors) and timeouts due to
machines going unresponsive at times of high load. In fadpmputes cause some of the longest waiting times
observed on the production cluster. A recompute can casotwlearlier phases if the inputs for the recomputed task
are no longer available and need to be regenerated.

3.3 lllustration of Outliers

Figurel(a) shows the workflow fot.og_Merge a job whose structure is typical of those in the cluster. jbhereads

a dataset of search usage and derives an index. It consist® ashap-reduce operations and a join, but for clarity
we only show the first map-reduce here. Phase names follo®@ye&d [12] convention-extractreads raw blocks,
partition divides data on the key arajgregateaeduces items that share a key.

Figurel(b)depicts a timeline of an execution of this workflow. It pldte thumber of tasks of each phase that are
active, normalized by the maximum tasks active at any tintbabphase, over the lifetime of the job. Tasks in the first
two phases start in quick succession to each other@s, whereas the third starts after a barrier.

Some of the outliers are evident in the long lulls before asphends when only a few of its tasks are active. In
particular, note the regions before-xl and x-.5. The spike in phase #2 here is due to the outliers in phabelding

SThere is a variant in implementation where a slot is resefued task before all its inputs are ready. This is either toudize the latency of
network transfer by moving data over the network as soon iasgiéneratedl], 10], or compute partial results and present ansvesline even
before the job is complets8]. Regardless, pre-allocation of slots can hog more regsuiar longer periods if the input task(s) straggle.

on to the job’s slots. At the barrierqx1, just a few outliers hold back the job from making forwardgress. Though
most aggregate tasks finish at 8, the phase persists for another 20%.

The worst cases of waiting immediately follow recomputasiof lost intermediate data marked RyRecompu-
tations manifest as tiny blips near the x axes for phase$#thtinished earlieg.g, phase #2 sees recomputesatX
though it finished at %.1. At x~.2, note that aggregate almost stops due to a few recomgmnsati

We now quantify the magnitude of the outlier problem, befme&senting our solution in detail.

4 Quantifying the Outlier Problem

We characterize the prevalence and causes of outliers airdrtipact on job completion times and cluster resource

usage. We will argue that three factors — dynamics, conoayrand scale, that are somewhat unique to large map-
reduce clusters for efficient and economic operation, ltatore of the outlier problem. To our knowledge, we are

the first to report detailed experiences from a large pradnchap-reduce cluster.

4.1 Prevalence of Outliers

Figure2 plots the fraction of high runtime outliers and recomputes phase. For exposition, we arbitrarily say that a
task has high runtime if its time to finish is longer than 1B imedian task duration in its phase. By recomputes, we
mean instances where a task output is lost and dependesttagkuntil the output is regenerated.

We see in Figur@ that 25% of phases have more than 15% of their tasks as sufliee figure also shows that 99%
of the phases see no recomputes. Though rare, recomputes ddespread impac§4.3). Two out of a thousand
phases have over 50% of their tasks waiting for data to bempated.

How much longer do outliers run for? FiguBeshows that 80% of the runtime outliers last less than 2.54ithe
median task duration in the phase, with a uniform probatilitoeing delayed by between 1.5x to 2.5x.

The tail is heavy and long— 10% take more than 10x the medigatidun. Ignoring these if they happen early in a
phase, as current approaches do, appears wasteful.

Figure3 shows that most recomputations behave normally, 90% of tirenslustered about the median task, but
3% take over 10x longer.

4.2 Causes of Outliers

To tease apart the contributions of each cause, we firstrdgterwhether a task’s runtime can be explained by the
amount of data it processes or reads across the netwifrkot, then the outlier is likely due to workload imbalance
or poor placement. Otherwise, the outlier is likely due towace contention or problematic machines.

Figure4(a)shows that in 40% of the phases (top right), all the tasks kigh runtimes (i.e., over 1.5X the median
task) are well explained by the amount of data they processwoe on the network. Duplicating these tasks would not
make them run faster and will waste resources. At the otheeme, in 18% of the phases (bottom left), none of the
high runtime tasks are explained by the data they procegsré4(b) shows tasks that take longer than they should, as
predicted by the model, but do not take over 1.5X the mediskitatheir phase. Such tasks present an opportunity for
improvement. They may finish faster if run elsewhere, yetanirschemes do nothing for them. 20% of the phases (on
the top right) have over 55% of such improvable tasks.

4For each phase, we fit a linear regression model for taskniiéegiven the size of input and the volume of traffic moved asidow bandwidth
links. When the residual error for a task is less than 20%, iterun time is within [.8, 1.2]X of the time predicted byithmodel, we call it
explainable.

g
£ ool L
5 08 g 08
'5 0.7 F 06 !
& 82 _ _ g o4l /| highruntime
T g2 high runtime 3 recompute ------
'g 0.3 recompute ------ 02
8 02 0
g o1 012 4 6 8 10
3 0 01 02 03 04 05 Ratio of Straggler Duration to the
Fraction of Outliers Duration of the Median Task
Figure 2:What fraction of tasks in a phase are outliers? Figure 3:How much longer do outliers take to finish?
100
g 1 g 1 £
“w w = 80
So0s8 So0s8 -
So6 So0s6 80
204 204 s o
® ® 20 !
502 7 502 5 1(62.8%)
E o Eo+———— O 0+ T
© 20 40 60 80 100 © 0 20 40 60 80 100 0 20 40 60 80 100
% of tasks that have high % of tasks that are unexplainably Ideal Redn. (%) in Completion Time
runtime but are explainable long, but not long per-se
@ (b) Figure 5: For reduce phases, the reduction in comple-
. o)) tion time over the current placement by placing tasks in a
Figure 4:Contribution of data size to task runtime ($ge?) network-aware fashion.

Data Skew: It is natural to ask why data size varies across tasks in agplasoss phases, the coefficient of vari-
ation (%) in data size is .34 and 3.1 at the 50th and 90th percentitesn Experience, dividing work evenly is
non-trivial for a few reasons. First, scheduling each aolditl task has overhead at the job manager. Network band-
width is another reason. There might be too much data on ain&fir a task to process, but it may be worse to split
the work into multiple tasks and move data over the networkhifd reason is poor coding practice. If the data is
partitioned on a key space that has too little entropy,a.éew keys correspond to a lot of data, then the partitionis wil
differ in size. Some reduce tasks are not amenable to sgliftieither commutative nor associati&]), and hence
each partition has to be processed by one task. Some joinsoatsdare similarly constrained. Duplicating tasks that
run for long because they have a lot of work to do is countedpctive.

Crossrack Traffic: We find that reduce phases contribute over 70% of the crokarnaftic in the cluster, while most
of the rest is due to joins. We focus on cross rack traffic beedlie network links upstream of the racks have less
bandwidth than the cumulative capacity of servers in thk.rac

We find that crossrack traffic leads to outliers in two waysstiin phases where moving data across racks is
avoidable (through locality constraints), a task that emgl$n a disadvantageous network location runs slower than
others. Second, in phases where moving data across rackavsidable, not accounting for the competition among
tasks within the phase (self-interference) leads to astli@ a reduce phase, for example, each task reads from every
map task. Since the maps are spread across the clustedlesgasf where a reduce task is placed, it will read a lot of
data from other racks. Current implementations place redasks on any machine with spare slots. A rack that has
too many reduce tasks will be congested on its downlink fegth outliers.

Figure5 compares the current placement with an ideal one that mueisnithe cost of network transfer. When
possible it avoids reading data across racks, and if natepleasks such that their competition for bandwidth does not
result in hotspots. In over 50% of the jobs, reduce phasesiatfor 17% of the job’s lifetime. For the reduce phases,
the figure shows that the median phase takes 62% longer uraeutrent placement.

Bad and Busy Machines: We rarely find machines that persistently inflate runtimescd®nputations, however,

1
=
(=]
o

;"14 300 model outliers - recomputes
= 20 Fiox Fx XK x ‘b :); \ e "X;hx
213 4 CPU Ratio $ 7 250 | ey gt m&ﬁg@&:@‘ﬁw{ix
s N - iol 60 ® 5 , e A
5 1.2 A Memory Ratio = E 200 x B8 o = O < G '
g_ “~..—#Recomputes | 40 E E 150 % #55 KF A Sis . o
______________ S T x X X

g11 L 20 © g 100 ¢ 3 . @ g; .
g E PR S B B

= 50 = - # T X,
“ 1 . : 0 IR RS

0 200 400 600

0 10 20 30
Fraction of Cluster (%))
Machine Id

Figure 6:The ratio of processor and memory usage when
recomputations happen to the average at that machine (y1).

Also, the cumulative percentage of recomputations acrossFigure 7: Clustering recomputations and outliers across
machines (y2). time

are more localized. Half of them happen on 5% of the machinékd cluster. Figuré plots the cumulative share

of recomputes across machines on the axes on the right. Tire fadso plots the ratio of processor and memory

utilization during recomputes to the overall average ontf@chine. The occurrence of recomputes is correlated with
increased use of resources by at least 20%. The subset ofiraathat triggers most of the recomputes is steady over
days but varies over weeks, likely indicative of changintspots in data popularity or corruption in disl&.[

Figure7 investigates the occurrence of “spikes” in outliers. We fimat runtime outliers (shown as stars) cluster
by time. If outliers were happening at random, there shooldhe any horizontal bands. Rather it appears that jobs
contend for resources at some times. Even at these busy;, tithes lightly loaded machines exist. Recomputations
(shown as circles) cluster by machine. When a machine Ibsesutput of a task, it has a higher chance of losing the
output of other tasks.

Rarely does an entire rack of servers experience the sanmaiynd/NVhen an anomaly happens, the fraction of
other machines within the rack that see the same anomalys's’.hemgiO for recomputes, an% for runtime with high
probability. So, it is possible to restart a task, or refgéaautput to protect against loss on another machine witten t
same rack as the original machine.

4.3 Impact of Outliers

We now examine the impact of outliers on job completion tiraed cluster usage. Figugeplots the CDF for the
ratio of job completion times, with different types of oetis included, to an ideal execution that neither has skewed
run times nor loses intermediate data. The y-axes weighsjehdy the total cluster time its tasks take to run. The
hypothetical scenarios, with some combination of outlgesent but not the others, do not exist in practice. So we
replayed the logs in a trace driven simulator that retaiesstinucture of the job, the observed task durations and
the probabilities of the various anomalies (detail§@). The figure shows that at median, the job completion time
would be lower by 15% if runtime outliers did not happen, agdriore than 34% when none of the outliers happen.
Recomputations impact fewer jobs than runtime outliers wihen they do, they delay completion time by a larger
amount.

By inducing high variability in repeat runs of the same jobtliers make it hard to meet SLAs. At median, the
ratio of jjjﬁ in job completion time is 0.8, i.e., jobs have a non-triviedipability of taking twice as long or finishing
half as quickly.

To summarize, we take the following lessons from our expege
e High running times of tasks do not necessarily indicate st@acution - there are multiple reasons for legitimate

variation in durations of tasks.

100 +

' e
i 80 - g
o
° 60 1 A~ .~"No Stragglers
X 40 4,/ .7 —NoRecomputes
& < 27 1 —Neither
82 ;. :
- 1(34.7%)
0 T T T T 1

0 20 40 60 80 100
Ideal Redn. (%) in Completion Time

Figure 8:Percentage speed-up of job completion time in the ideal was® (some combination of) outliers do not happen

Task Operations

Outlier unequal di n
Causes of work])
Solutions start tasks that < duplicate network aware e replicate output

do more first « kill, restart placement * pre-compute

Figure 9:The Outlier Problem: Causes and Solutions

e Every job is guaranteed some slots, as determined by clpstiy, but can use idle slots of other jobs. Hence,
judicious usage of resources while mitigating outliers ¢@kateral benefit.

e Recomputations affect jobs disproportionately. They ri@sniin select faulty machines and during times of heavy
resource usage. Nonetheless, there are no indicationslbf facks.

5 Mantri Design

Mantri identifies points at which tasks are unable to make progteilse aormal rate and implements targeted solutions.
The guiding principles that distinguiglantri from prior outlier mitigation schemes acause awarenesmdresource
cognizance

Distinct actions are required for different causes. Figlispecifies the actionslantri takes for each cause. If
a task straggles due to contention for resources on the m@at@starting or duplicating it elsewhere can speed it
up (§5.12). If a task takes too long because it has a lot of work to dagthee two options: split it into smaller tasks or
schedule large tasks before the others to avoid being stitbkive large ones near completidib(1, §5.4). However,
not moving data over the low bandwidth links between racks, iaunavoidable, doing so while avoiding hotspots
requires systematic placemei§b(2). To speed up tasks that wait for lost input to be recomputedfind ways to
protect task output6.3).

There is a subtle point with outlier mitigation: reducing ttompletion time of a task may in fact increase the job
completion time. For example, replicating the output ofrgwask will drastically avoid recomputations, both copies
are unlikely to be lost at the same time, but can slow downdhépgcause more time and bandwidth are used up for
this task denying resources to other tasks that are waitingrt. Similarly, addressing outliers early in a phase \exat
slots for outstanding tasks and can speed up completionpBténtially uses twice as many resources per task. Unlike
Mantri, none of the existing approaches act early or replicateutuffurther, naively extending current schemes to act
early without being cognizant of the cost of resources, ashesv in§6, leads to worse performance.

Closed-loop action allowlantri to act optimistically by bounding the cost when probahiptedictions go awry.
For example, even wheviantri cannot ascertain the cause of an outlier, it experimergtlys copies. If the cause does

slots

baseline, 1
w/o early 2 time

SN |2t | t [P

' time

duplicate

NP

kill, restart

NP

Figure 10:A stylized example to illustrate our main ideas. Tasks thateaentually killed are filled with stripes, repeat instesic
of a task are filled with a mesh.

not repeatedly impact the task, the copy can finish fasteharalle the contrary caselantri continuously monitors
running copies and kills those whose cost exceeds the henefit

Based on task progress repolntri estimates for each task the remaining time to finis}),,, and the predicted
completion time of a new copy of the tagk,..,. Tasks report progress once every 10s or ten times in tffieiintie,
whichever is smaller. We ugk to refer to this period. We defer details of the estimatiogitdand proceed to describe
the algorithms for mitigating each of the main causes ofiexst! All that matters is thdt..,,, be an accurate estimate
and that the predicted distributiop.,, account for the underlying work that the task has to do, the@piateness of
the network location and any persistent slowness of the naghine.

5.1 Resource-aware Restart

We begin with a simple example to help exposition. Figl®shows a phase that has seven tasks and two slots. Normal
tasks run for timeg and2t¢. One outlier has a runtime 6t. Time increases along the x axes.

The timeline at the top shows a baseline which ignores osthad finishes att. Prior approaches that only
address outliers at the end of the phase also finigh at

Note that if this outlier has a large amount of data to protettisg the straggling task be is better than killing or
duplicating it, both of which waste resources.

If however, the outlier was slowed down by its location, teeand and third timelines compare duplication to a
restart that kills the original copy. After a short time t@idify the outlier, the scheduler can duplicate it at thetnex
available slot (the middle time-line) or restart it in-pdagthe bottom timeline). If prediction is accurate, regtayis
strictly better. However, if slots are going idle, it may beriihwhile to duplicate rather than incur the risk of losing
work by killing.

Duplicating the outlier costs a total 8f in resourcesqt before the original task is killed antdor the duplicate)
which may be wasteful if the outlier were to finish in soonertBt by itself.

5.1.1 Restart Algorithm

Mantri uses two variants of restart, the first kills a running tastt eestarts it elsewhere, the second schedules a
duplicate copy. In either methoMantri restarts only when the probability of success, P&tyc., < trem) IS high.
Sincet, ., accounts for the systematic differences and the expectedndig variationMantri does not restart tasks
that are normal (e.qg., runtime proportional to work). Psmadle 1 summarizes the algorithkmantri kills and restarts
a task if its remaining time is so large that there is a more #aen chance that a restart would finish sooner. In

1: let A = period of progress reports
2: let c = number of copies of a task
3: periodically, for each running task, kill all but the fadtescopies afterA time has passed since begin
4: while slots are availabldo
if tasks are waiting for slotthen
kill, restart task iftrem > E(tnew) + A, stop aty restarts
duplicate ifP(trem > tnew <E1) > 6
start the waiting task that has the largest data to read
else > all tasks have begul
10: duplicate iffE(tnew — trem) > pA
11: end if
12: end while

=]

Pseudocode 1algorithm for Resource-aware restarts (simplified).

particular,Mantri does so whet,..,,, > E(t,..,) + A.5 To not thrash on inaccurate estimateantri never kills a task
more thany = 3 times.

The “kill and restart” scheme drastically improves the jampletion time without requiring extra slots as we
show analytically §A). However, the current job scheduler incurs a queueingydeddore a task is restarted. This
delay can be large and has a high variation. Hence, we carsitleduling duplicates.

Scheduling a duplicate results in the minimum completioretof the two copies and provides a safety net when
estimates are noisy or the queueing delay is large. Howivelquires an extra slot and if allowed to run to finish,
consumes extra computation resource that will increasgotheompletion time if outstanding tasks are prevented
from starting. Hence, when there are outstanding tasks argpare slots, we schedule a duplicate only if the total
amount of computation resource consumed decreases. inypartif ¢ copies of the task are currently running, a
duplicate is scheduled only B(¢,,c., < ?‘Htrem) > §. By default,d = .25. For example, a task with one running
copy is duplicated only if,,.,, is less than half of,..,,,. For stability,Mantri does not re-duplicate a task for which it
launched a copy recently. Any copy that has run for some tinteigslower than the second fastest copy of the task
will be killed to conserve resources. Hence, the number phing copies of a task is never larger thah. On the
other hand, when spare slots are available, a duplicatéésisted if the reduction in the job completion time is larger
than the extra resource consumed,,c., — trem) > pA. By default,p = 3.

Mantri's restart algorithm is independent of the values for itsapagters. Setting to a larger angh, 6 to a smaller
value trades off the risk of wasteful restarts for the rewafrd larger speed-up. The default values err on the side of
caution.

By scheduling duplicates conservatively and pruning aggively,Mantri has a high success rate of its restarts. As
a result, it reduces completion time and conserves ress(f€e?).

5.2 Network-Aware Placement

Reduce tasks, as noted befo§é.@), have to read data across racks. A rack with too many recisés is congested
on its downlink and such tasks will straggle. Figdteillustrates such a scenario.

Mantri approximates the optimal placement that relieves congebii the following greedy local algorithm. For a
reduce phase with tasks running on a cluster withracks, it takes the input matrik, ,- that specifies the size of input
available on a rack for each of the reduce taskite that the sizes of the map outputs in each rack are knowret
scheduler prior to placing the tasks of the subsequent eedbase. For every permutation of reduce tasks allocated

5Since the median of the heavy tailed task completion timeibligion is smaller than the mean, this check implies thét,ew < trem) >
P(tnew < E(tnew)) 2 .5

6The fastest copy, the second fastest one and a copy thatdesmlyebeen started.

In I, the sum over rows in columiis the output of map phase output on # rack, and the sum over columns in rgvis the size of data to
be read by thg*" reduce task.

10

(b)

Figure 11:Three reduce tasks (rhombus boxes) are to be placed acressréitks. The rectangles indicate map output, written
out as three partitions, present in each of the racks. Ealtlteetask has to process one block of each type. An ad-hoeméat

on the left creates network bottlenecks on the cross-rags lfhighlighted) causing tasks in such racks to stragftbelnetwork
were to have no other traffic, the even placement on the rigiitia hotspots.

E é:; ; —— -
: erepllca b

redo - r?.(tZ redo)

| —
L redo™

= repllca* orig 11 In
r' 0 0 max(t redo"‘t redo)

. eg0=Toto
@) (b) ©

replication t.
cost rep

d z
re'::%rgput In budget? replicate

cost
(d)

Figure 12:Avoiding costly recomputations: The cost to redo a taskides the recursive probability of predecessor tasks having
to be re-done (a). Replicating output reduces the effegiiobability of loss (b). Tasks with many-to-one input patgshave high
recomputation cost and are more valuable (c). The time txetp, ¢.., is calculated based on the available rack-local bandwidth
and data is replicated only#f.qo > tcp.

redo

across racks, let the data to be moved out (on the uplink)eadlin (on the downlink) on thé" rack bed:,, dlv and
the corresponding available bandwidthsbtheandb’, respectively. For each rack, compute two terms; = Z—u and

Coi = ‘Z— The first term is the ratio of outgoing traffic and availabbdink bandwidth, and the second term is the ratio

of inco?ning traffic and available downlink bandwidth. Thgaiithm computes the optimal value over all placement
permutations that specifies the rack location for each @skyg min max;c;, j = 1,---,2n,, by minimizing the
maximum data transfer time.

The available bandwidths, andb?, change with time and as a function of other jobs in the clufather than
track the changes as an oracle col#8][Mantri estimates the bandwidths as follows. Reduce phases withalh sm
amount of data finish quickly, and the bandwidths can be asduim be constant throughout the execution of the
phase. Phases with a large amount of data take longer to,famshthe bandwidth averaged over their long lifetime
can be assumed to be equal for all links. With these estimsasri's placement comes close to the ideal in our
experiments (se§6.4).

For phases other than redus&antri complements the Cosmos policy of placing a task close tceita f14]. By
accounting for the cost of moving data over low bandwidtkdiin ¢,,..,, Mantri ensures that no copy is started at a

11

location where it has little chance of finishing earlier #igyr not wasting resources.

5.3 Avoiding Recomputation

To mitigate costly recomputations that stall a jplantri protects against interim data loss by replicating task wutp
Mantri acts early by replicating those outputs whose cost to rectergxceeds the cost to replicatantri estimates
the cost to recompute as the product of the probability thabutput will be lost and the time to repeat the task. The
probability of loss is estimated for a machine over a longqeeof time. The time to repeat the tasktis, with

a recursive adjustment that accounts for the task’s indatszeing lost. The cost to replicate is the time to move
the data to another machine in the rack. Figléllustrates the calculation df..4, that tasks data loss probabilities
(r;'s), time taken by the tasks,;(s) and recursively looks at prior phases. Replicating outpduces the likelihood
of recomputation to the case when all replicas are unaveil#fa task reads input from many tasks (e.g., a reduce),
tredo 1S higher since any of the inputs needing to be recomputddstail the task’s recomputation. In Fig2(c), we
assume that if multiple inputs are lost, they can be recoetput parallel and the task is only stalled by the longest
input. Since the overall number of recomputes is small (fe@lthis is a fair approximation of practice.

In effect, the algorithm above replicates tasks at key glacen job’s workflow — when the cumulative cost of
not replicating many successive tasks builds up or when sasks ran on very flaky machines (higf) or when the
output is so small that replicating it would cost little (Iay,).

Further, to avoid excessive replicatidmantri limits the amount of data replicated 16% of the data processed by
the job. This limit is implemented by granting tokens prdjmoral to the amount of data processed by each task. Task
output that satisfies the above cost-benefit check is réptiaanly if an equal number of tokens are available. Tokens
are deducted on replication.

Mantri proactively recomputes tasks whose output and replicas)yif have been lost. Frofid, we see that re-
computations on a machine cluster by time, hevastri considers a recompute to be the onset of a temporal problem
and that future requests for data on this machine will faictgre-computatiordecreases the time that a dependent
task will have to wait for lost input to be regenerated. AsdbefMantri imposes a budget on the extra cluster cycles
used for pre-computation. Together, probabilistic regglan and pre-computation approximate the ideal schemerin o
evaluation ¢6.5).

5.4 Data-aware Task Ordering

Workload imbalance causes tasks to straggle. In particgieen a set of: tasks,s slots and data size1 - - - n],
computing the optimal schedule that minimizes the job cetiqh time is known to be NP-hartllantri improves job
completion time by scheduling tasks in a phase in desceraithgr of their data size. If the optimal completion time
isTo, we know:

T 4
Theorem 1 7o <535 from[1]]

This means that scheduling tasks with the longest proagtisie first is at mos$0% worse than the optimal.

5.5 Estimation oft,.,, and ¢,,c.,

Periodically, every running task informs the job schedaféts status, including how many bytes it has read or written
thus far. Combining progress reports with the size of thelfrgata that each task has to processviantri predicts
how much longer the task would take to finish as follows:

12

d
trem = telapsed * d— + twrapup- (2)

read

The first term captures the remaining time to process data.s€hond term is the time to compute after all the
input has been read and is estimated from the behavior aéetatks in the phase. Tasks may speed up or slow down
and hence, rather than extrapolating from each progresstréfantri uses a moving average. To be robust against
lost progress reports, when a task hasn’t reported for seyMéntri increases,...,,, by assuming that the task has not
progressed since its last report.

Mantri estimates,,..,, the distribution over time that a new copy of the task wikgao run, as follows:

tnew = processRate locationFactor d + schedLag 3)

The first term is a distribution of the process rate, i%td%j, of all the tasks in this phase. The second term is a
relative factor that accounts for whether the candidatehinacfor running this task is persistently slower (or fagster
than other machines or has smaller (or larger) capacity ®@nétwork path to where the task’s inputs are located. The
third term, as before, is the amount of data the task has wepso The last term is the average delay between a task
being scheduled and when it gets to run. We sho@6ir2 that these estimates are sufficiently accurateMantri’s
algorithms to function.

6 Evaluation

We deployed and evaluatéhntri on two of Bing's clusters, a production cluster consistifighousands of servers
and a smaller pre-production cluster. To compare againgii@ range of alternate techniques, we built a trace driven
simulator that replays logs from production.

6.1 Setup

Clusters The production cluster consists of thousands of servessataulti-core machines with tens of GBs of RAM
that are spread roughly 40 servers to a rack. This clusteseid by Bing product groups. The data we analyzed earlier
is from this cluster, so the observations frgrhold here. The pre-production cluster is a smaller bed wittilar
machines and network. It is used to bake new releases and getduction code.

Workload In the pre-production clustekjantri was deployed for nine days as the default build for all jobstos
cluster. An internal test harness, independent of us sstesss this cluster by issuing replicas of production jbtese,
we reportMantri’s performance on 202 jobs, each of which repeated over thress. We compare with runs of these
jobs that used the unmodified build.

In the production cluster, we evaluaiantri on four applications that represent common building blotlsrd
Countcalculates the number of unique words in the infable Joininner joins two tables each with three columns of
data on one of the columnGroup Bycounts the number of occurrences of each word in the filelligimaepsearches
for string patterns in the input. We vary input sizes from 316 500 GB.

Prototype Mantri builds on the Cosmos job scheduler and consists of aboutlk@3¥0of C++ code. To compute.,,,,
Mantri maintains an execution record for each of the running tdskisi$ updated when the task reports progress. A
phase-wide data structure stores the necessary statstosnputet,,..,. When slots become availabldantri runs
Pseudocode 1 and restarts or duplicates the task that wen&fibthe most or starts new tasks in descending order of
data size. To place tasks appropriately, name builds ongh¢agkaffinity list, a preferred set of machines and racks
that the task can run on. At run-time the job manager attetopgtéace the task at its preferred locations in random
order, and when none of them are available runs the task ditshavailable slot. The affinity list for map tasks has

13

machines that have replicas of the input blocks. For redaskst to obtain the desired proportional spread across
racks (se¢5.2), we populate the affinity list with a proportional numbemeéchines in those racks.

Trace-driven Simulator The simulator replays the logs shown in TaBldt faithfully repeats the observed distribu-
tions of task completion time, data read by each task, siddaration of inputs, probability of failures and fairness
based evictions. It mimics the job workflow, the numbers gk$aper phase, the input/output relationships, barriers
and cluster characteristics like machine failures andabitity of computation slots. For the network, it uses adlui
model rather than simulating individual packets. Doinglttter, at petabyte scale, is out of scope for this work. On
a 12 node testbed where each node had 8 core 2.5 GHz Intel Xeoassors and 32GB of RAM the simulations
reported here took several weeks to complete.

Compared Scheme®ur simulator comparedantri with the outlier mitigation strategies in Hadoadl,[Dryad [12],
MapReduce I0] and LATE [20]. We further compare against a modified form of LATE that garin one aspect; it
acts on stragglers early in the phase.

We also compar®antri against some ideal benchmark&Skewnimics the case when all tasks in a phase take the
same amount of timé&NoSkew + ChopTailemoves the worst quartile of durations, and sets everyttadie average
of remaining durationddealReducassumes perfect up-to-date knowledge of available bartdsvichd places reduce
tasks accordingly anidealRecomputeses future knowledge of which tasks will wait for their inpto be recomputed
and acts to ensure that they do not happen.

Metrics As our primary metrics, we use the reduction in completioretand resource usage, where

Current— Modified
Current ' “)
A reduction of 50% implies that the property in question, ptetion time or resources used, decreases by half.
Negative values of reduction imply that the modificationsus®re resources or takes longer.
Our results are summarized as follows:

Reduction=

e Mantri’s intelligent duplication and network-aware placementazfuce phases reduced the completion times of
representative jobs/phases on the production cluster byenage of 25% and 28.4%.

e Simulations driven from production logs show thdntri's duplication reduces the completion time of phases
by 21% and 42% at 30 and 73" percentiles. HereMantri’s reduction in completion time improves on Hadoop
by 3.1x while using fewer resources than MapReduce, eacth@hnare the current best on those respective
metrics.

e Mantri’'s network-aware placement of tasks speeds up half of theceepghases by at least 60% each.

e Mantri reduces the completion times due to recomputations of judtcbnstitute 25% (or 50%) of the workload
by at least 40% (or 20%) each, consuming negligible extrauress.

6.2 Deployment Results

Straggler Mitigation Figure 13 comparedMantri with the baseline Cosmos implementation for four jobs ragni
on the larger cluster. Each job was repeated twenty timeds avitl withoutMantri. The histograms plot the average
reduction, error bars are the 10th and 90th percentilesropkss. We see thallantri improves job completion times
by roughly 25%. Further, by terminating the largest straggéarly, resource usafgls by roughly 10%. As we show
later in§6.3, this is because very few of the duplicates scheduled byufrest mitigation scheme based on Dryad are
useful.

14

50
4
.E g 0 .E 8 30 -
S F30 S 2
L < L 5
46 o L =4 o 20 !
o— o
S 520 = 13.4
T T ' 9.5
& 210 & o 10 - 7.6 o
XS x 2 25
0 -
Word Table Group Grep 0 Word Table Group Grep
Count Join By Count Join Bv
(@) Completion Time (b) # Resource Usage

Figure 13:ComparingMantri’s straggler mitigation with the baseline implementationa production cluster of thousands of
servers for the four representative jobs.

a0 B Max = Min [l Average
34.2

c g 31.5
c i 30
L c
G 82
=
& g10
X5

©o . .

Phase Job

Figure 14:ComparingMantri’'s network-aware spread of tasks with the baseline impleatiem on a production cluster of thou-
sands of servers.

100 100 -
()]
o 80 £ 80 A
£ =
i 60 2 60
o -- °
[}
2 40 X 40
R0 { 1 e
! a
a 1(14.3%) o2
o s . . . ,
0 20 40 60 80 100 50 30 -0 10 30 50
% Reduction in Completion Time %Reduction in Job Resources
(a) Completion Time (b) # Resource Usage

Figure 15:Evaluation ofMantri as the default build for all jobs on a pre-production clugsemine days.

To micro-benchmarhkyiantri’'s estimators, we logged progress reports from these ptmstuins. We find that
Mantri's predictor, based on reports from the recent past, essnat,, to within a 2.9% error of the actual completion
time. From the results above, we see that this accuracy esifiicsee practical gains.

Placement of TasksTo evaluateMantri’'s network-aware spreading of reduce tasks, weGaoup By a job with a
long-running reduce phase, ten times on the larger clustarre14 shows an average reduction in completion time of
the reduce phase of 28.4% with a maximum of 34%. Overalldhespeeds-up by an average of 12.6%. To understand
why, we measure th&preadof tasks, i.e., the ratio of the number of concurrently rmgrtasks to the number of racks
they are running in. High spread value means some racks agested, causing their tasks to straggle, while other
racks are idle. The spread felantri is 1.5 compared to 5.5 for the default implementation.

15

<100 - €100 -

2 e S e

‘g 80 - » e ‘g 80 - i --Dryad
860 rva & 60 - i Hadoop

g : Hadoop g I LATE
8407 LATE o 40 1 IE ---MapReduce
°; 20 A I:'§ +-‘MapReduce ‘: 20 - /. —Mantri

X 1 —Mantri X L. L

B8 0+ ——— g 0 === ———
© 220 0 20 40 60 80 100 © -40 -20 0 20 40 60 80 100

% Reduction in Resource Usage

% Reduction in Completion Time
(b) Change in Resource Usage

(a) Change in Completion Time

Figure 16:Comparing straggler mitigation strategidantri provides a greater speed-up in completion time while usingef
resources than existing schemes.

Jobs in the Wild All the jobs submitted to the pre-production cluster ranhwitantri for a nine day period. We
compare these job runs with earlier runs of the same jobg@matvith the unmodified build. Figurgs(a)plots the
CDF of the net improvement in completion times of 202 job&sJthat occupy the cluster for half the time sped up
by at least 14.3%. We see larger gains on the benchmark jabe production cluster and in trace driven simulations.
This is perhaps because, the pre-production being ligb#giéd has fewer outliers and hence, less roormtotri to
improve. Figurel5(b)also shows that 60% of jobs seeealuctionin resource consumption while the others use up a
few extra resources.

To compare against alternative schemes and to piece aastfgan the various algorithms Mantri, we present
results from the trace-driven simulator.

6.3 CanMantri mitigate stragglers?

Figure16 compares straggler mitigation strategies in their impaat@mpletion time and resource usage. The y-axes
weighs phases by their lifetime since improving the londesaiges improves cluster efficiency. The figures plots the
cumulative reduction in these metrics over each of the 21&sps in Tabl@ with each phase repeated 3 times.

Figures16(a)and16(b) show thatMantri improves completion time by 21% and 42% at the 50th and 75th pe
centiles and reduces resource usage by 3% and 7% at thesafdesc Results from simulation are consistent with
those from our production deploymei§6(2). We attribute these gains to the combinatioreafly actionandcause-
awarerestarts.

From Figurel6(a) at the 50th percentileMantri sped up phases by 21.1%, an additional 3.1X over the 6.9%
improvement of Hadoop, the next best scheme. To achievéltddsop uses 15.9% more resources (Figo)).

MapReduce and Dryad have no positive impact until the 80th&ih percentile respectively. Up to the 30th
percentile Dryad increases the completion time of phasASELis similar in its time improvement to Hadoop but
does so using fewer resources.

The reason for poor performance is that they miss outlieas lthppen early in the phase and by not knowing
the true causes of outliers, the duplicates they schedalenastly not usefulMantri and Dryad schedule .2 restarts
per task for the average phase (.06 and .56 for LATE and H3d8oip, Mantri's restarts have a success rate of 70%
compared to the 15% for LATE. The other schemes have loweessaates.

While the insight ofearly actionon stragglers is valuable, it is nonetheless non trivial.a¥aluate this in Fig-
uresl7(a)andl17(b)that present a form of LATE that is identical in all ways exciyat it addresses stragglers early.
We see that addressing stragglers early increases coamptitie up to the 40th percentile, uses more resources and
is worse than vanilla LATE. Being resource aware is crucaet the best out of early actio$().

16

[
(=]
o

c
s 2
s 80 . o 80
- s> =1
a 6o 0 60 —LATE
[
1] "] -« LATE + Early
s 4 - LATE + Early g 40
e 20 —LATE x® 2
X ; o s
w 0 , a 0+ T T T T T]
o o
o 20 10 0 10 20 30 40 20 -10 0 10 20 30 40
% Reduction in Completion Time % Reduction in Resource Usage
(a) Time (b) Resources
Figure 17:Extending LATE to speculate early results in worse perforoea
§ 190 1_.Noskew § 100 9 oo
2 N
g 80 .. NoSkew + ChopTail ~ E 80 .
~~~~~~ F
O 60 {—Mantri o 60
g 2
] 40 A P = 40 -- NoSkew + ChopTail
’
; 20 + /" ;\‘; 20 --NoSkew
w o o o . —Mantri
a—* T T T T d o =4 T T T T d
Q (=)
10 0 10 20 30 40 50 -0 0 10 20 30 40 50
% Reduction in Completion Time % Reduction in Resource Usage
(a) Time (b) Resources

Figure 18:Mantri is on par with an ideaNoSkewbenchmark and slightly worse th&toSkew+ChopTai{see end 0£6.3)

c 100 - —Start
o 4
S 80 - —Equal
g -+ Mantri =3
0O 60 - --ldealReduce -
a A
© 40 - T
= arileeT
% it
e 20 A g
I 59.1%
I-QL 0 = T T I( ol) 1
o

0 20 40 60 80 100
% Reduction in Completion Time

Figure 19:Compared to the current placemeMiantri’s network aware placement speeds up the median reduce lph&986.

Finally, Fig. 18 shows thaMantri is on par with the ideal benchmark that has no variation iksa@$oSkewand
is slightly worse than the variant that removes all durationthe top quartileNoSkew+ChopTailThe reason is that
Mantri’'s ability to substitute long running tasks with their fast®pies makes up for its inability to act with perfect
future knowledge of which tasks straggle.

6.4 DoedViantri improve placement?

Figure19 plots the reduction in completion time dueMantri’'s placement of reduce tasks as a CDF over all reduce
phases in the dataset in TallleAs before, the y-axes weighs phases by their lifetime. Tdnerdé shows thatantri
provides a median speed up of 60% or a 2.5X improvement oegeculrent implementation, vindicating our choice
of monitoring and judiciously using the available resogr@@etwork bandwidths).

The figure also comparégantri against strategies that estimate available bandwidtfexeliftly. TheldealReduce
strategy tracks perfectly the changes in available bantivatilinks due to the other jobs in the cluster. Thgual

17



100 1

< 100 [
2 8
% 80 = 80
= S
8 6o 3 60 A .
@ 40 —Dryad o —Mantri
- «Mantri o 40 -
s 20 = -« IdealRecompute
a. o
X 20 4
X 0+ : . . T T , w
w [a]
8 1 6 11 16 21 26 31 o 0 T T T T 1
Ratio of median to slowest 0 20 40 60 80 100

read throughputs of tasks % Reduction in Completion Time

Figure 20:Ratio of median to the slowest throughput g re 21:By probabilistically replicating task output and
among tasks in every reduce phase, with placement po"c'esrecomputing lost data before it is needddntri speeds up
of Mantri and Dryad. jobs by an amount equal to the ideal case of no data loss.

strategy assumes that the available bandwidths are equeasaall links whereaStart assumes that the available
bandwidths are the same as at the start of the phase. We se&@bquder betweeistartandEqual Short phases are
impacted by transient differences in the available banthgidndStartis a good choice for these phases. However,
these differences even out over the lifetime of long phasesthomEqualworks betterMantri is a hybrid ofStart
andEqual It achieves a good approximationldiealReducevithout re-sampling available bandwidths.

To capture howantri’s placement differs from Dryad, Figu9 plots the ratio of the throughput obtained by the
median task in each reduce phase to that obtained by the stltagk.Mantri's network aware placement, based on
the available bandwidths and data transfer patterns, essiat in the median reduce phase, the slowest throughput
experienced by a task is about 5% lower than the median. @ticsimever exceeds 2. Dryad’s policy of placing tasks at
the first available slot causes outliers— the ratio of theiarethroughput to the slowest is 5.25 (or 14.33) at thé %6r
75") percentile. Duplicating the tasks that were delayed dueading across congested links without considering
available bandwidths would not have helped.

6.5 DoedVantri help with recomputations?

The best possible protection against loss of output wolletlfminate all the increase in job completion time due
to tasks waiting for their inputs to be recomputed and (b)@evigh little additional costMantri approximates both
goals. Fig21 shows that by selectively replicating tasks that are méedylito have their inputs corrupted (by noting
their cause - problematic machines) and early action tacprepute data that has already been Ibsitri achieves
parity with IdealRecomputeRecall that IdealRecompute has perfect future knowleddess. The improvement in
job completion time is 20% and 40% at the 50th and 75th peitesnt

As supporting evidence, Figul® shows thaMantri is successful in eliminating most of the recomputation&s78
of the median job’s recomputations are eliminated. Thowghesjobs have only a small fraction of their recomputes
eliminated (the bottom 5% of the phasedpntri’s policy to protect the output of tasks that are more expent
recompute lets it reach parity with ldealRecompute. Figitalso shows the individual contributions from repli-
cation and pre-computation; they contribute roughly tWioet and one-third towards the eliminated recomputations,
complementing each other.

Fig. 23(a)shows that the extra network traffic due to replication isefall negligible and) comparable to a scheme
that has perfect future knowledge of which data is lost apticates just that datajantri sometimes replicates more
data than the ideal, and at other times misses some taskshihzlt! be replicated. Fig.3(b)shows that speculative
recomputations take no more than a few percentage extrizrchesources.

The reason for improvements with low overheadntri's accurate prediction of cause and resource cognizant
decisions. The probability that task output that was reypdid will be used, because the original data becomes un-

18



100 - —Pre-computation

c .
o -+ Replication —— !
E 80 ---Mantri :'
A 60 J
a [T T T e i
040 H /.. PR :

e SO :

SN 20 4427 ' i

:o: 0 4 (25%)5 . i(s?%) 5.(78%’.

0 20 40 60 80 100
% Recomputes Eliminated

Figure 22:Fraction of recomputations that are eliminated duglémtri’'s recomputation mitigation strategy, along with indivadu
contributions from replication and pre-computation.

=

1)

S
[
1)
=]

©

o
®
o

-]
(=]

—Replication
--ldealRecompute

B
=]

CDF % of Total Traffic
N
o

(=]

0 02 04 06 038 1
Increase in Traffic (%)
(a) Cost: Network Traffic

N & O
© © o o

CDF % Cluster Resources

0 05 1 15 2 25 3
Increase in Cluster Resource(%)
(b) Cost: Cluster Time

Figure 23: The cost to protect against recomputes is fewer than a feeeptage points in both the extra traffic on the network
and cluster time for speculative recomputation.

available, is 84%. Similarly, the probability that a tasktttvas pre-computed becomes necessary, because thelorigina
data remains unavailable when it is needed for the subsetask) is 76%. If pre-computations are triggered when
two recomputations happen at a machine in quick successitirer than one, this success rate increases to 93%. We
consider the high success rate as a validation of our estimatz,..q, and the prediction of the onset of failure.

7 Related Work

Outliers inevitably occur in systems that compete for a slarresource pools2P], of which mapreduce is one
example. OpenDHTZ4] and MONET [] reported outliers over planetlab and wide-area Interespectively.

Much recent work focuses on large scale data parallel camputollowing on the map-reducé(] paper, there
has been work in improving workflowd,[12], language design/[ 21, 31], fair schedulers13, 32], and providing
privacy [25]. Our work here takes the next step of understanding how puotiuction clusters behave and can be
improved.

Run-time stragglers have been identified by past wbyk(, 15, 20]. However, this paper is the first to characterize
the prevalence of stragglers in production and their varauses. By understanding the causes, addressing steaggle
early and scheduling duplicates only when there is a faincbahat the speculation saves both time and resources,
our approach provides a greater reduction in job compléiioa while using fewer resources than prior strategies that
duplicate tasks towards the end of a phase. Also, we unigelg network hotspots and protect against loss of task
output, two further causes of outliers.

By only acting at the end of a phase, current scherbe$(, 12] miss early outliers. They vary in the choice of
which among the tasks that remain at the end of a phase tocdtmliAfter a threshold number of tasks have finished,
MapReduce 10] duplicates all the tasks that remain. Drydd| duplicates those that have been running for longer

19



than the 75th percentile of task durations. After all taskgehstarted, Hadoof] uses slots that free up to duplicate
any task that has read less data than the others, while 2@tdiiplicates only those reading at a slow rate.

Further, current approacheis L0, 12] only duplicate tasks except for Late(] which also stops using persistently
slow machines. Logs from the production clustgt)(show that persistent slowness occurs rarely and dupdiciie
not counter most of the causes of outliers, e.g., those thatldt of work.

Though some recent proposals do away with capacity ovesesigition in data center$] 18], today’s networks
remain over-subscribed albeit with smaller ratios thars¢him the past. It is common to place tasks near their in-
put (same machine, rack etc.) for map and at the first freéaioéduce 1, 10, 12]. Our approach to eliminate outliers
by a network-aware placement is orthogonal to recent waakpfcks tasks requiring different resources on to a ma-
chine R7], or trades-off fairness with efficiency §]. In particular, Quincy accounts for capacity but not fontite
variations in bandwidth due to competition from other tasks

Addressing loss of intermediate data is of recent focus[18Bprotects intermediate data by replicating locally-
consumed data, i.e., the output of reduce tasks. ISS'scegjaln strategy runs the risk of being both wasteful (very
few machines are error-prone) as well as insufficient (whap tasks are long). In contrast, we analyze the magnitude
and origin of the problem with real traces and present a l@osalution that replicates output of any task based on the
probability of data loss and speculatively precompute oistthat are already lost.

The MapReduce paradigm is similar to parallel databasets igaal of analyzing large dat23 and to dedi-
cated HPC clusters or parallel prograrig][by presenting similar optimization opportunities. In $keecontexts, task
scheduling and duplication have been studied for multippe@ssorsq, 26]. Notably, Star-MPI ] adapts placement
of parallel MPI programs by observing performance over tiResearch has also focused on modeling and optimizing
the communication in parallel prograng; [L9, 22] that have one-to-all or all-to-all traffic, i.e., where eyeeceiver
cares for all of the input. The many-to-many traffic typichhmapreduce is different from these patterns and leads to
different optimizations.

8 Conclusion

Mantri delivers effective mitigation of outliers in map-reducéwerks. It is motivated by, what we believe is, the first
study of a large production map-reduce cluster. The rotasfiri’'s advantage lies in integrating static knowledge of
job structure and dynamically available progress repattsa unified framework that identifies outliers early, apgpli
cause-specific mitigation and does so only if the benefitghdri than the cost. In our implementation on a cluster of
thousands of servers, we fiivthntri to be highly effective.

Outliers are an inevitable side-effect of parallelizingriworhey hurt map-reduce networks more due to the struc-
ture of jobs as graphs of dependent phases that pass datarito the other. Their many causes reflect the interplay
between the network, storage and, computation in map-eediwarent systems shirk this complexity and assume that
a duplicate would speed things Wpantri embraces it to mitigate a broad set of outliers.

Acknowledgments

We would like to thank David Aldous, Duke Harlan, Yuxiong Heatrick Helland, Mosha Pasumansky and Jingren
Zhou for feedback on drafts of this paper. Alexei Polkhanod duhan Lee were invaluable in taking Mantri to
production clusters.

The opinions expressed here are personal opinions of them@uand do not necessarily represent those of em-
ployers or other funding sources.

20



References

[1] Hadoop distributed filesystenittp://hadoop.apache.org
[2] A. Faraj, X. Yuan, D. Lowenthal. STAR-MPI: Self Tuned Aatave Routines for MPI Collective Operations. limternational
Conference on Supercomputjrzp06.
[3] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexibl
Data Center Network. I8IGCOMM 2009.
[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and Ry.Raproving web availability for clients with monet. MSD|,
2005.
[5] B. Ucar, C. Aykanat, K. Kaya, M. lkinci. Task assignmenthieterogeneous computing systemsJadarnal of Parallel and
Distributed Computing2006.
[6] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, AArpaci-Dusseau, and R. H. Arpaci-Dusseau. An analysis taf da
corruption in the storage stack. FAST, 2008.
[7] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. ShakibM&aver, and J. Zhou. SCOPE: Easy and Efficient Parallel
Processing of Massive Datasets.MhDB, 2008.
[8] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Béagy, and R. Sears. Mapreduce onlineN®BDI, 2010.
[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. SchaugerSantos, R. Subramonian, T. V. Eicken. LogP: Towards a
Realistic Model of Parallel Computation. 8iIGPLAN PPoPP1993.
[10] J. Dean and S. Ghemawat. Mapreduce: Simplified dateepsireg on large clusters. @SDI, 2004.
[11] R. L. Graham. Bounds on multiprocessing timing anoegl8IAM Journal on Applied Mathematick7(2):416—429, March
1969.
[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. ad: Distributed Data-parallel Programs from Sequentiglding
Blocks. InEurosys 2007.
[13] M.lsard, V. Prabhakaran, J. Currey, U. Wieder, K. Tajwad A. Goldberg. Quincy: Fair scheduling for distributetnputing
clusters. INSOSR2009.
[14] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, andhBikén. The Nature of Datacenter Traffic: Measurements and
Analysis. InIMC, 2009.
[15] S. Ko, I. Hoque, B. Cho, and I. Gupta. On Availability eftermediate Data in Cloud Comput. HotOS 2009.
[16] S. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud intediate data fault-tolerant. BOCGC 2010.
[17] A. Krishnamurthy and K. Yelick. Analysis and optimizats for shared address space progradwurnal of Parallel and
Distributed Computation1996.
[18] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalablent@aodity Data Center Network Architecture. ACM SIGCOMM
Aug 2008.
[19] M. Lauria and A. Chien. MPI-FM: High Performance MPI oro¥kstation Clusters. Idournal on Parallel and Distributed
Computing 1997.
[20] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, |. Staidmproving MapReduce Performance in Heterogeneous @mvir
ments. InNOSDI, 2008.
[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. TamkiPig Latin: A Language for Data Processing. SisMOD,
2008.
[22] P. Patarasuk, A. Faraj, X. Yuan. Pipelined BroadcasEtrernet Switched Clusters. IREE IPDPS 2006.
[23] A.Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeW8ttR. Madden, and M. Stonebraker. A comparison of approaches
large scale data analysis. iGMOD, 2009.
[24] S. Rhea, B.-G. Chun, J. Kubiatowicz, and ScottShenkgxing the embarrassing slowness of opendht on planetlab. |
WORLDS2005.
[25] I. Roy, S. T. Shetty, A. Kilzer, V. Shmatikov, and E. Whigl. Airavat: Security and privacy for mapreduce N8DI, 2010.
[26] S. Manoharan. Effect of task duplication on assignneéntependency graphs. Rarallel Comput, 2001.
[27] T. Sandholm and K. Lai. Mapreduce optimization usingulated dynamic prioritization. IBIGMETRIC$S2009.
[28] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Komlta, and D. G. Andersen. Csamp: A system for network-wide
flow monitoring. INNSDI, 2008.
[29] D.  Wischik, M. Handley, and M. B. Braun. The resource lpmp  principle.

21


http://hadoop.apache.org

___original distribution
P(R>r)
distribution with reduced
tail P(R'>r)

O‘

Probability,

._.
S,
5

tk:11

15| \
5

10 15
completion time, r

10
20

Figure 24:Comparing a heavy-tailed task completion time distribut{é = 1.1) with the eventual distribution after long tasks
are killed and re-started,( = 11, ts = 10), SeeSA.

www.cs.ucl.ac.uk/staff/D.Wischik/Research/respdatlh

[30] Y. Yu, P. K. Gunda, and M. Isard. Distributed Aggregatior Data-Parallel Computing: Interfaces, Impl. S®SP 2009.

[31] VY. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, IR. Gunda, and J. Currey. DryadLINQ: A System for Generalp@ge
Data-Parallel Computing Using a Language O8D|, 2008.

[32] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, Berer, and I. Stoica. Job scheduling for multi-user mayred
clusters. Technical Report EECS-2009-55, UCBerkeley.

A Analysis: Chopping the heavy tail
Consider “kill and restart$5.1. Suppose the task completion time distributi®ms heavy tailed, such that
P(R>r)=r", pg>1, r>1

Lett, =t — A. Given some technical conditions gnwhich is satisfied by setting, = ER+ A, the task completion
time after “kill and restart’R’ satisfies this proposition:

Proposition 1
P(R>r) =717 forr <t

rets rets 5
P(R>tS & V)= 2 V)77, omw. ©)

P(R >r) < {
This means that the new distribution is dominated by theimaigistribution below the threshold to ki), and has
only an exponential tail above the threshold. The proof thenAppendix. Fig24 compares the two distributions.
Due to the smaller variation, the job completion time desesal et the job completion time before and after be
T,T'. Recall thatn, s are the numbers of tasks and slots.

Proposition 2
E(T — T') > max <IE( max R;), EER) —E(max R)) — “ER’,
S S

1<i<n 1<i<n

where each term is evaluated given the distributifrspecified in Propositiod.

To understand what this means, suppase 1, ¢, = ER andt¢;, = ER + 1. For different values of the number of
tasks, slots and heavy-tail exponent £, 3), we empirically estimate the the percentage reductionlincompletion
time, E(:';Ei_TT/). Table3 shows that whes = 2, which is a moderately heavy tail, chopping the tail viaaestg leads
to atleast a 59% speed up in job completion.

Proof for Proposition 1. Forr < ¢, P(R < r) < P(R’ < r) since tasks less thanremain, and tasks greater

thant;, can become less than

22


www.cs.ucl.ac.uk/staff/D.Wischik/Research/respool.html

B | n | s | timereduction

1.1 | 200 | 100 99%
1.5 | 200 | 100 91%
1.5 | 100 | 50 86%

2 100 | 50 59%

Table 3:Reduction in job completion time.

Forr > ¢, we need

PR >rR<7)<P(R <r,R>r)Vr>t (6)
Observe that foz > #;, if one of the| <!« | restarts succeed®& < t, + A - "5+ = r. HenceP(R' > r|R <
_Blr—ts—A _Blr—ts—=4)

)
r)<ts, & .Similarly,P(R' <r|R>r)>1—t; =
We derive the condition forg) to hold.

_Blr—ts—=A) _Blr—ts—A)
t- A Pli<R<r) (1—t. 2 P(R>r)
_Blr—ts—=A) _Blr—ts—A)

N () (1—ts & )y’

IN

A

t(%il)

%

Lvr>t 7
tk

Evaluating {) and its gradient at = ¢;, we obtain that, > 1 andt; > max(A/logt,,t. + A) is sufficient.
Hence, forr > ¢,

r—ts _ r—ts _
PR >r) =@ & V)P =pR>t 2 V1), n
Proof for Proposition 2. We need the following lemmas regarding the job completioretil’. Assume there are
slots and a total ofi tasks with sizes;,i =1, --- ,n.

Lemma l T > max; x;.
1
Lemma2 T > 1% a;
With the policy that a task is assigned whenever a slot is idle
Lemma 3 T < max; z; + % DT

Proposition2 follows from lower bounds fof” and upper bound for”. |

23



	Introduction
	Background
	The Outlier Problem
	Outliers in a Phase
	Extending from a phase to a job
	Illustration of Outliers

	Quantifying the Outlier Problem
	Prevalence of Outliers
	Causes of Outliers
	Impact of Outliers

	Mantri Design
	Resource-aware Restart
	Restart Algorithm

	Network-Aware Placement
	Avoiding Recomputation
	Data-aware Task Ordering
	Estimation of trem and tnew

	Evaluation
	Setup
	Deployment Results
	Can Mantri mitigate stragglers?
	Does Mantri improve placement?
	Does Mantri help with recomputations?

	Related Work
	Conclusion
	Analysis: Chopping the heavy tail

