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Network Centrality: Key Concept in Network Science

• Key question: who are at the central positions in 

a network?

• Classical Centrality Measures: Degree, Distance, 

Betweenness, Eigenvalue (PageRank)

• Issue: Only deal with static network structure, 

what about the effect of social interaction 

dynamics on network centrality?
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Social Influence: Dynamics on Social Networks
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• Social Influence: Social influence is everywhere

– Adoptions if ideas, innovations, products, opinions

– Conformity, social pressure, obedience

– Influences are propagated in the network

• Questions: 

– How to incorporate social influence in centrality 

measure?

– How to systematically study influence-based 

centrality measures?



Our Approach

• Comparative study on two centrality measures:

– Single-Node-Influence (SNI) centrality: since node’s influence used as 

centrality

– Shapley centrality: based on cooperative game theory, allocate total 

influence as credits/shares to nodes 

• Axiomatic study: axiomatic characterization of both centralities

– Provide the precise difference of the two centralities

• Algorithmic study: efficient algorithms for both centralities 
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Definitions of SNI and Shapley 

Centralities 
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Stochastic Influence Propagation Models

• Model how influence stochastically

propagate in a network, starting from a 

seed set

• Classical models: Independent Cascade (IC) 

Model, triggering model [Kempe, Kleinberg, 

Tardos ‘03]

– No need to understand the mechanism for this 

talk

• Influence spread 𝜎(𝑆): expected number of 

nodes activated

– Measure the power of set 𝑆
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General Influence Instance

• Influence instance I = (𝑉, 𝐸, 𝑃
I
)

– 𝑃
I
: 2𝑉 × 2𝑉 → [0,1]

– 𝑃
I
(𝑆, 𝑇): probability that seed set 

𝑆 activates exact target set 𝑇

– 𝑆 ⊆ 𝑇

• Influence spread:

– 𝜎 𝑆 = σ𝑇⊆𝑉 𝑃I(𝑆, 𝑇) ⋅ 𝑇
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Influence-based Centrality Measure

• Influence-based centrality measure 𝜓

– 𝜓: {I} → ℝ𝑛

• Centrality measure as dimension 

reduction
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Influence instance
≈ 22𝑛 dimension

Influence spread
≈ 2𝑛 dimension

Centrality
𝑛 dimension



Single-Node-Influence (SNI) Centrality

• Node 𝑣’s SNI centrality is 𝑣’s influence spread

𝜓𝑣
𝑆𝑁𝐼

I = 𝜎
I

𝑣

• Natural and intuitive

• Measure node’s power in isolation
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Cooperative Game Theory and Shapley Value

• Measure individual power in group settings

• Cooperative game over 𝑉 = [𝑛], with characteristic function 𝜏: 2𝑉 → ℝ

– 𝜏(𝑆): cooperative utility of set 𝑆

• Shapley value 𝜙: {𝜏} → ℝ𝑛 : 𝜙𝑣 𝜏 =
1

𝑛!
σ𝜋∈Π(𝜏(𝑆𝜋,𝑣 ∪ {𝑣}) − 𝜏(𝑆𝜋,𝑣))

– Π: set of permutations of 𝑉

– 𝑆𝜋,𝑣: subset of 𝑉 ordered before 𝑣 in permutation 𝜋

– Average marginal utility on a random order

• Enjoy a unique axiomatic characterization
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Shapley Centrality

• Node 𝑣’s Shapley Centrality is the Shapley value of the influence 

spread function

𝜓𝑣
𝑆ℎ𝑎𝑝𝑙𝑒𝑦

I = 𝜙𝑣(𝜎I)

– Treat influence spread function as a cooperative utility function

• Measure node’s power in groups

• More precisely, node’s marginal influence in a random order
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Axiomatic Characterizations of 

Shapley and SNI Centralities
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Why Axiomatization?

• Provide unique characterization of a centrality measure

• Know the determining factors of a centrality measure

• Axiomatic comparison among different centrality measures
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Shapley Centrality: An Axiomatic Characterization

• Five axioms uniquely determining Shapley centrality

• Axiom 1 (Anonymity). Invariant under node id permutation

• Axiom 2 (Normalization). Sum of centrality measure is 𝑛

– For every instance I, σ𝑣∈𝑉𝜓𝑣 I = 𝑛

– Average centrality measure per node is 1

– A share division of the total influence spread
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Axiom 3 (Independence of Sink Nodes)

• Axiom 3: Sink node projection preserves the centrality of 
other sink nodes

• Sink node

– 𝑣 is a sink node in I, if ∀𝑆, 𝑇 ⊆ 𝑉 ∖ 𝑣
𝑃
I
𝑆 ∪ 𝑣 , 𝑇 ∪ 𝑣 =𝑃

I
𝑆, 𝑇 + 𝑃

I
𝑆, 𝑇 ∪ {𝑣}

– Sink nodes have no influence to others, but others may 
influence sink nodes.

• Sink node projection: I ∖ {𝑣} = (𝑉 ∖ {𝑣}, 𝐸 ∖ {𝑣}, 𝑃
I∖{𝑣}

)

𝑃
I∖{𝑣}

𝑆, 𝑇 =𝑃
I
𝑆, 𝑇 + 𝑃

I
𝑆, 𝑇 ∪ {𝑣}

– Equivalent to removing the sink node and its incident links in 
the triggering model
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Axiom 4 (Bayesian)

• Bayesian combination (convex combination) of influence 

instances gives convex combination of centrality measures.
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I1

Influence 
instance 1

I2

I

𝑝 1 − 𝑝

I = 𝑝I1 + (1 − 𝑝)I2

Influence 
instance 2

Convex combination 
of I1 and I2

𝜓(I) = 𝑝𝜓(I1) + (1 − 𝑝)𝜓(I2)



Axiom 5 (Bargaining with Critical Sets)

• 𝑟-vs-1 critical set instance I𝑅,𝑣
– Bipartite graph: set 𝑅 vs. a sink node 𝑣; |𝑅| = 𝑟
– Set 𝑅 together activates all nodes

– Missing any one in R, generates no further influence

• The sink node in the 𝑟-vs-1 critical set instance 
I𝑅,𝑣 has centrality 

𝑟

𝑟+1
– Smaller than 1, because others can influence 𝑣
– When 𝑅 gets larger, getting close to 1, because coalition in 
𝑅 gets weaker

• Can be explained by Nash bargaining solution

• Extend to general critical set instance I𝑅,𝑈
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Characterization Theorem for Shapley Centrality

• Characterization Theorem: Shapley centrality is 
the unique centrality measure satisfying Axioms 
1-5, and these axioms are independent.

• Proof sketch:

– Use vector representation of influence instances

– Find a set of instances (critical instances {I𝑅,𝑈}) as a 
set of basis for the vector space

– Centrality of basis instances are uniquely determined 
by the axioms

– Linearity of convex combination preserves 
uniqueness
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Axiomatic Characterization of SNI Centrality

• Axiom 4 (Bayesian). Centrality measure of Bayesian 

influence instance respects the linearity-of-

expectation principle

• Axiom 6 (Uniform Sink Nodes). Every sink node has 

centrality 1.

• Axiom 7 (Critical Nodes). In any critical instance 

I𝑅,𝑈, the centrality of a node in 𝑅 is 1 if 𝑅 > 1, 

and is |𝑈| if 𝑅 = 1. 

• Theorem: SNI centrality is the unique one satisfying 

Axioms 4, 6, 7, and these axioms are independent.
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Comparison of Shapley and SNI Centrality

SNI  Centrality Shapley Centrality

From definition Focus on single node 

influence

Focus on influence in groups

On normalization NO YES, consider share division

On sink nodes Treat them the same, only 

consider outgoing influence

Not the same, consider 

incoming influence

On critical nodes Always 1 when 𝑅 > 1, not 

good for threshold-like 

influence models

Always greater than 1, 

decreasing when |𝑅| increases, 

consider individual power in a 

group setting

Summary Node influence power in 

isolation

Node irreplaceable power in 

group setting
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Scalable Algorithm
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Algorithmic Challenge

• Influence spread computation is #P-hard

• Shapley value definition involves factorial
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Our Approach

• Based on the reverse reachable set (RR-set) approach for 
influence maximization [Borges et al’14, Tang et al’14, ‘15]

– RR set 𝑹: randomly select a node 𝒗, reserve simulate diffusion (in the 
triggering model), the set of nodes reversely reachable from 𝒗 is 𝑹

– Key property: 𝜎(𝑆) = 𝑛 ⋅ 𝔼𝑹[𝕀{𝑆 ∩ 𝑹 ≠ ∅}]

• For SNI: repeatedly sample RR sets, estimate influence spread of 
all nodes together ---𝜓𝑢

𝑆𝑁𝐼 = 𝜎( 𝑢 ) = 𝑛 ⋅ 𝔼𝑹[𝕀{𝑢 ∈ 𝑹}]

• What about Shapley?

– Key property for Shapley: 𝜓𝑢
𝑆ℎ𝑎𝑝𝑙𝑒𝑦

= 𝑛 ⋅ 𝔼𝑹[𝕀{𝑢 ∈ 𝑹}/|𝑹|]

– Almost the same algorithmic structure as SNI
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Our Result

• SNI and Shapley centrality share the same algorithmic structure

• Can approximate SNI and Shapley centralities with 𝜀
multiplicative error, with probability 1 − 1/𝑛ℓ

• Running time: 𝑂
1

𝜀2
⋅ ℓ 𝑚 + 𝑛 log 𝑛 ⋅

𝔼 𝜎 ෤𝑣

𝜓 𝑘
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𝑘-th largest centrality

Near linear time Constant in many graphs



Conclusion and Future Work

• We provide dual axiomatic and algorithmic characterization

– Axiomatically, exact characterization of SNI and Shapley centrality

– Algorithmically, efficient computation for both using the same 
algorithmic structure

• Future work

– SNI and Shapley centrality can be viewed as two end points in a 
spectrum, from node based centrality to group based centrality, what 
about others in the middle?

– Extending traditional degree, distance, betweenness centralities etc. to 
influence based centralities? 

– More efficient algorithms?
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Thank you, and questions?
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