
Conversational Chat Circles: Being All Here Without
Having to Hear It All

Matthew K. Miller
1,2

, John C. Tang
1
, Gina Venolia

1
, Gerard Wilkinson

1,3
, Kori Inkpen

1

1
Microsoft Research

Redmond, WA USA

{johntang, ginav, kori}

@microsoft.com

2
Department of Computer

Science, University of

Saskatchewan

Saskatoon, SK, Canada

matthew.miller@usask.ca

3
Open Lab, Newcastle University

Newcastle upon Tyne, UK

g.wilkinson@newcastle.ac.uk

ABSTRACT

Live streaming services are a growing form of social media.

Most live streaming platforms allow viewers to

communicate with each other and the broadcaster via a text

chat. However, interaction in a text chat does not work well

with too many users. Existing techniques to make text chat

work with a larger number of participants often limit who

can participate or how much users can participate. In this

paper, we describe a new design for a text chat system that

allows more people to participate without overwhelming

users with too many messages. Our design strategically

limits the number of messages a user sees based on the

concept of neighborhoods, and emphasizes important

messages through upvoting. We present a study comparing

our system to a chat system similar to those found in

commercial streaming services. Results of the study

indicate that the Conversational Circle system is easier to

understand and interact with, while supporting community

among viewers and highlighting important content for the

streamer.

Author Keywords

Text chat; live streaming.

ACM Classification Keywords

H.5.2 User Interfaces

INTRODUCTION

Live streaming services, such as Periscope and Facebook

Live, offer users a way to broadcast video and audio in real

time while interacting with viewers. The recent popularity

of these apps has been documented in the popular press

[11,0] and in studies that have looked at early user practices

[16]. Although the competing live streaming services each

have unique features, at their core they all offer the ability

for broadcasters to stream live video –

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2017, May 06 - 11, 2017, Denver, CO, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4655-9/17/05…$15.00

DOI: http://dx.doi.org/10.1145/3025453.3025621

usually from a smartphone – to any number of viewers,

from a few friends to large worldwide audiences. A

common feature across popular live streaming services is

that viewers can send text messages to other viewers and

the streamer as a communication backchannel among the

participants. Those text messages are integrated with the

display of the accompanying video, and are often used to

express reactions, add commentary, and even make requests

of the broadcasting streamer. Since all the viewers can see

these chat messages, they often use it to communicate with

each other by building on others’ reactions or answering

others’ questions. Streamers monitor the text chats as well,

but typically speak their responses into the live stream

rather than type into the chat.

While text chat as a backchannel accompanying live

streams works well for smaller crowds, it runs into

problems when audiences grow to hundreds or thousands of

viewers, which has happened with recent live streams

[11,0]. Although most live streaming services have

recognized that large-scale text chats become

unmanageable and have attempted to avoid the problem,

these existing solutions fall short in some way. Most

solutions attempt to limit the amount of content generated

by restricting the number of messages users can send or

restricting which people can send messages. However,

artificially limiting users’ ability to send messages reduces

their ability to participate in the community around the

stream. It also functions only as a stopgap solution that will

not scale as audiences continue to grow. Live streaming

gives users the chance to affect media as they consume it.

To enable all users to experience the magic of live

streaming, we must allow them to participate without

restrictions.

In this paper, we present a new technique for scaling text

chats to a high number of participants without limiting the

ability for everyone to participate. We designed a new

technique, which we call a Conversational Circle, which

shows viewers and streamers a manageable amount of

content without limiting their ability to participate. Our

design goal was to share text messages with enough people

that the audience would feel a sense of common ground,

and to share the most salient messages with all the viewers

and the streamer. After reviewing related work, we describe

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2394

our iterative prototyping process, our implemented working

prototype, and a study that compares our prototype with

conventional text chat mechanisms.

RELATED RESEARCH

Our primary interest in large-scale text interaction is rooted

in text chat as a communication backchannel in live

streaming services. However, text chat has been integrated

into a variety of forms of computer-mediated

communication tools, and has been the focus of several

studies. Weisz et al. [19] showed that adding a text

backchannel when watching video together led to rating the

video content higher and liking the other participants better.

Since communicating online, especially through text,

misses much of the richness of human interaction, studies

have explored how to keep users engaged in online

communities [1]. Studies of lurking (reading messages

without actually posting a contribution) found that among

the reasons users lurk is because they feel like they have

nothing to offer, relative to others’ messages, and that there

were too many messages [13]. Managing a large volume of

text messages is also a problem various text chat prototypes

[18] have explored.

Viewership of highly popular live streams has demonstrated

that the text backchannel cannot viably support group

interaction at very large scale. A recent live stream of a

protester climbing the Trump Tower attracted over 225,000

concurrent viewers [0]. A study of the popular game live

streaming service, Twitch, found that users mostly watched

streams with over 1000 viewers, and half of the streams

they watched exceeded 5000 viewers [7]. They found that

with such a large-scale audience, the chat was a source of

breakdown in interaction, where viewers could no longer

follow the conversation. The text chat becomes more of an

ambient roar of the crowd without meaningful one-on-one

interaction. This observation is consistent with the

modeling done by Nascimento et al. [8] that found that after

the audience reaches 1000 people, further increases to the

audience size do not increase the volume of chat messages

as much. In other words, users joining a high scale text chat

are less able or willing to contribute. The Periscope app

historically limits text chat participants to about 100 people

(others can view and give hearts, but cannot contribute text

messages). Facebook Live allows everyone to comment but

does not show viewers all incoming messages.

Twitch has several mechanisms to help manage large

audiences. Streamers can designate some users as

moderators who can remove inappropriate or unwanted

messages. Moderators often also help with greeting other

viewers and answering viewer questions, easing the burden

of interaction on the streamer. Twitch also enables

streamers to limit viewers to sending only a certain number

of messages per minute. Streamers can also restrict the

ability to comment on the video to only paying subscribers

to their channel. However, these mechanisms somewhat

artificially limit interaction, and rely on the streamer to

select moderators and set up interaction limits. Such

configuration can be challenging to do in the moment, such

as when a live streamer comes upon some breaking news to

share.

When large audiences overwhelmed the text backchannel in

game live streaming, Hamilton et al. [7] noted that massive

streams were still compelling to watch, even though the text

chat could not afford meaningfully interacting with others.

However, a study of using of live streaming in crisis

response [6] found that text requests made by the viewers

often were not acted upon, which could be more

consequential.

Keeping up with the text chat in large live streams is

especially a challenge for the streamer, who is also

navigating their actions within the live event. A study of a

research prototype that included a text backchannel to the

streamer [3] documented the effort of the streamer who is

both participating in an event and sharing it with viewers.

Reeves et al. [14] also noted the challenge of streaming

video, navigating the environment, and interacting with a

remote online audience through text in a mixed reality

game. In a popular live stream with many text messages, it

is difficult for any user to keep up with the chat. For the

streamer, who must simultaneously keep the camera

appropriately aimed, monitoring the chat is even harder.

Based on this prior work and our own experiences in

watching live streams that have attracted large viewing

audiences, we believe there is a need to design a text

communication backchannel to support the needs of both

viewers and the streamer in large-scale live streams.

Beyond live streaming, this concept could be useful in any

large-scale text conversation that unfolds in real time.

One technique that has emerged as a useful way of filtering

through large volumes of text contributions is an upvoting

mechanism: enabling the community to vote up or down on

text messages to highlight the most salient messages and

filter out ones that do not need more attention. Upvoting

has been studied in asynchronous social sites, such as Q&A

sites [17] and Yik Yak [15], where it was found to be a

successful way of community filtering to highlight

important contributions. Upvoting is more challenging in

real time events, where there may be a limited time to

collect user input and act on it before the opportunity has

passed. Tools like Sli.do (https://www.sli.do/home), are

used to collect questions from an audience of a live event to

select which ones to ask the presenter. Faieta et. al.’s group

discussion system [4] uses upvoting in a structured proposal

reviewing system to find consensus among large groups.

However, neither are designed to support general text chat

discussion in addition to their primary function. This work

led us to explore how we could integrate upvoting in a more

flexible and unintrusive way to help filter large volumes of

text messages associated with large-scale live streams.

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2395

http://sli.do/

PROTOTYPING

To explore this design space, we tried some quick

prototypes to investigate the role of upvoting and

subgrouping.

Upvoting

Our initial approach to managing text chat volume at high

scale was to highlight messages with greater saliency to the

viewers and streamer. We chose to do this by allowing

users to upvote chat messages by clicking on them. In this

way, the crowd could indicate which messages were

important to them. To test this concept, we used a pre-

existing tool, Sli.do, which has similar affordances. Sli.do is

designed for attendees of conferences or other speaking

events and allows them to submit questions and upvote

questions they want answered. Speakers or moderators at

events can see the most popular questions sorted by number

of upvotes.

Design

We used Sli.do as a pseudo text chat to test the concept of

upvoting messages during a live stream. To accomplish

this, we created a webpage with an embedded Facebook

Live stream and an embedded Sli.do window. Users could

submit any message they wanted into the Sli.do system, as

if it were a text chat system accompanying the video live

stream, and to click the upvote button on messages which

they wanted the streamer to see. The interface is shown in

Figure 1.

The streamer carried two phones, one running the standard

Facebook Android app used to broadcast the live stream,

and the other opened to the Sli.do administrator page to

show a list of messages sorted by number of upvotes.

Testing

To test this interface, we sent a streamer to a local street

carnival event in the Seattle area. The streamer shared a

power tool racing event, where participants constructed and

raced small cars powered by power tools. We then recruited

151 viewers using Amazon’s Mechanical Turk platform to

watch the live stream and participate in the text chat. After

viewing the stream for 20 minutes, participants completed a

questionnaire about their experience.

Results

Unfortunately, this testing suffered from a few technical

issues, which did not allow for a smooth viewer experience.

Due to poor cellular signal at the carnival location the

stream was very laggy and frequently cut out entirely.

Furthermore, the load on the Sli.do system was too high.

Although Sli.do is normally able to accommodate many

more than 150 users, our system created an unusual load for

the system because it was used as a text chat, resulting in

much more interaction than Sli.do’s intended use case of

submitting questions to a speaker. Because of this increased

load, the Sli.do window was often unresponsive and laggy.

Despite technical issues, feedback from participants still

allowed us to learn from this prototype. We asked users to

suggest one thing they would improve from the experience.

Beyond the technical glitches in the video stream cited by

most users (117), 18 responded that the chat scrolled by too

quickly. The other 15 users gave a variety of other

suggestions. The most consistent feedback apart from the

technical issues was that the volume of incoming messages

– generated by 151 concurrent viewers – was high. Too

many messages are not only difficult to read, but especially

difficult to interact with (e.g., upvote) because the user must

click on a moving button attached to the message. This

issue was exacerbated by the fact that messages on screen

jumped downward to make space for new messages at the

top. These movements, which featured no animation, were

impossible to anticipate.

Most systems that use upvoting allow users to browse

content at their own pace, rather than upvote as it scrolls by.

Therefore, we were interested to know if upvoting would be

useful in discerning which messages were more important

than others. We asked if users felt that the upvoting

mechanism was helpful in highlighting important content,

on a 5 point Likert scale from strongly disagree (1) to

strongly agree (5). The mean response was 3.21, slightly

above neutral. We also asked what kinds of comments they

upvoted. Most indicated that they upvoted messages about

the technical issues. However, 22 users indicated that they

upvoted humorous messages. We coded the chat log by

tagging each message with at least one message type. We

found that 30% (339/1143) of all messages got at least one

upvote, while 71% (10/14) of messages we tagged as

humorous got upvoted, and 27% (126/470) of messages

tagged as technical issue related got upvoted. We did not do

any formal statistical analysis of the prototype data because

it was highly confounded by the video stream issues, but

did feel that the results warranted further investigation into

real-time upvoting of comments.

Grouped Upvoting

Although there was some initial promise for the idea of

upvoting, the first prototype made it clear upvoting alone

Figure 1 The viewer interface of the initial upvoting prototype

with the stream on the left and the Sli.do window on the right

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2396

would not enable text chat to scale to hundreds of users. It

was necessary to lower the overall volume of messages so

that users could read and interact with them. To do this, we

decided to partition users into separate groups, each group

having its own text chat system.

Design

To test the concept of grouping viewers, we used the same

interface as the previous prototype, but rather than

embedding the same Sli.do instance on every user’s page,

we assigned one of several separate Sli.do instances to each

incoming user, thus partitioning them into groups. By

limiting the number of users chatting in each instance, we

avoided the scalability issues of the first prototype.

Testing the first prototype showed that it was awkward for

the streamer to carry around two separate devices. We did

not want to exacerbate that problem with this prototype,

since there were multiple separate chat instances to

monitor. To solve this problem, we used human moderators

who monitored the text chats and copied the most upvoted

messages from Sli.do into the comments section of the

Facebook live stream. The viewers saw Facebook’s

embedded live video player, with comments disabled to

prompt them to use the accompanying Sli.do instance as a

text chat with upvoting. However, the streamer saw only

the messages copied by the human operators into the

Facebook Live app they used for streaming.

Testing

To test this interface, we sent a streamer to broadcast a

virtual tour of exhibits at the Museum of Flight, a local

museum of aviation artifacts. We recruited 142 viewers

using Amazon’s Mechanical Turk platform and evenly

divided them into five subgroups. They all watched the

same live stream but each subgroup had its own Sli.do text

chat instance. Two human moderators monitored the

upvoted messages in each Sli.do instance to forward to the

streamer on Facebook Live. After viewing the stream for 20

minutes, participants completed a questionnaire about their

experience.

Results

Based on this deployment we found that users were better

able to read and upvote messages due to the grouping

feature, which significantly reduced the volume of

incoming messages within each Sli.do instance. In response

to the same question about what one thing from the

experience they would like improved, none of the

participants said the volume of incoming messages was too

high. The vast majority suggested that the streamer keep the

camera steadier or show different things in the museum.

While we did not statistically compare the open-ended

feedback from the two studies, we believe that the lower

number of messages made reading and interacting easier.

We also saw evidence that the upvoting system was

working as intended. We again asked if users felt that the

upvoting mechanism was helpful in highlighting important

content (again on a 5-point Likert scale from strongly

disagree to strongly agree). For this prototype, the mean

response was 4.03, indicating user agreement that upvoting

was helpful in highlighting content. Again, we looked

through the chat data for objective evidence that upvoting

was helpful. Since there were far fewer messages that were

humorous or about technical issues, the coding of the

messages changed such that a direct comparison with the

previous prototype was not possible. Instead, we tagged all

messages in the chat log that asked the streamer to do or

show something as requests. Requests are a common type

of message that are only effective when seen by the

streamer. We found that 69% (83/120) of all requests got at

least one upvote while 48% (528/1107) of all other

messages got at least one upvote. A Pearson Chi-Square test

showed this difference is significant (Χ2(1, N = 1227) =

19.963, p ≈ .000). Thus, upvoting was meaningful in

highlighting requests, one of the most common types of

message intended for the streamer.

However, there were some issues remaining with the

design. The most significant issue is that statically sized

groups are not practical for real-world use. In order to

accommodate users joining and leaving a stream in a real-

world application, group sizes would have to adjust to allow

evenly splitting viewers into groups. However, changing

group sizes would involve moving users from one group to

another, which may be confusing to users (as they would

suddenly be chatting with different people). Alternately,

one or more groups could simply have a different size than

the rest, but this means that smaller groups may not have a

healthy level of interaction, and larger groups may have a

harder time upvoting messages.

Another issue is that viewers did not share enough context

to understand the streamer’s responses to text comments.

For example, if a viewer in group A asked the streamer a

question which the streamer verbally responded to in the

stream, viewers in groups other than A had no way of

knowing the context for the streamer’s response, as they

would have never seen the message posing the question.

CONVERSATIONAL CIRCLES

Prototyping showed that the ideas of grouping viewers and

allowing messages to be upvoted complement each other.

Grouping viewers creates a lower, more manageable

number of messages that allows them to be read and acted

upon by upvoting. But grouping results in several disjoint

conversations, making it harder for the streamer to manage

and understand the ongoing conversation. Voting requires a

manageable number of messages, as users need to be able

to interact with messages as they appear on screen. It also

provides a way to filter through a large number of

messages, by selecting messages with a higher number of

upvotes.

Flexible Grouping with Neighborhoods

A Conversational Circle is a concept designed to overcome

the issues of rigid grouping of participants, while still trying

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2397

Neighborhood

User

Figure 2 An illustration of a Conversational Circle. The user

(star) sees all messages from other users in their neighborhood

(unfilled circles), some popular messages from users closer to

their neighborhood (lighter circles) and only the most popular

messages from users further away (darker circles).

to foster community by allowing users to interact with a

relatively stable group of peers. In a Conversational Circle,

not all the users see each message; rather, each message is

seen by a subset of people who have a chance to upvote it.

As more people upvote the message, it is shown to more

people. If it crosses a threshold, it is shown to everyone

including the streamer. The algorithm used to implement

this concept places all the participants in a hypothetical

circle and calculates distances to determine who sees what

message.

Each user is assigned a fixed position, p on a hypothetical

circle, represented by a value from [0,1). This means that

for a pair of users, U1 and U2, with positions p1 and p2, a

distance can be calculated between them as the shorter of

the two arcs connecting them:

𝒅𝒊𝒔𝒕(𝒑𝟏, 𝒑𝟐) = 𝒎𝒊𝒏(|𝒑𝟏 − 𝒑𝟐|, 𝟏 − |𝒑𝟏 − 𝒑𝟐|)

Rather than fixed groups of users, each user on the

Conversational Circle has a neighborhood, N, defined by a

distance threshold. For a user Ux, all other users whose

distances to the user are less than the threshold, Tx are part

of the user’s neighborhood:

𝑵𝒙 = {𝑼𝒚|𝒅𝒊𝒔𝒕(𝒑𝒙, 𝒑𝒚) < 𝑻𝒙}

Every user sees all messages from users in their

neighborhood. The neighborhood relationship is

asymmetric; that is, user Ux belonging to the neighborhood

of Uy does not guarantee that user Uy belongs to the

neighborhood of Ux. In practice, it will be symmetric for the

vast majority of pairs of users. The neighborhood of one

user is depicted in Figure 2.

Shared Context with Upvoting

In the previous prototype, we used human moderators to

pass the most popular messages on to the streamer.

However, the staffing required by human moderation is not

realistic in many cases. A Conversational Circle uses

upvoting to identify which messages are most popular, in

effect spreading the moderation work across all the

participants in the chat. Each message that is sent has an

initial audience, which is all users whose neighborhoods

include the sender of the message. Viewers can upvote a

message at any time by tapping the message. As messages

float up a user’s screen, messages that get no or few

upvotes fade out of view, leaving visual gaps in the flow of

messages on screen. The system fills these gaps with

popular messages that the user would not otherwise have

seen. These messages come from outside the user’s current

neighborhood, and are close in age to the message which

was removed from the gap. This means that more popular

messages are shown to a larger audience.

Because minimizing perceptual and cognitive burden on the

streamer is important, we chose to only show them up to

three messages at any time. These are the messages with the

most upvotes in the system, which we call the top three

messages. All viewers also see the same top three

messages, which sit stationary at the top of the chat

window. That way, viewers share common ground with

each other and the streamer. While messages shown in the

rest of the chat window may differ for each user, the top

messages are the same for all viewers and the streamer.

This shared context addresses the problem of not knowing

what message a streamer is referring to when viewers do

not share a view with the streamer.

Managing Content Volume with Dynamic Adjustments

Feedback from our initial prototypes indicated that users

did not want to be overwhelmed by too many messages so

that reading and interacting with them was difficult. To

avoid this problem, the Conversational Circle makes

dynamic adjustments that control the number of messages a

user sees based on moving averages of activity in the

system. The system bases these adjustments on target

values for how much content users should see.

 Neighborhood Threshold: The neighborhood

threshold increases if there are too few messages

sent by others in a user’s neighborhood and

decreases if there are too many.

 Message Removal Aggressiveness: The system

becomes more or less aggressive in removing

messages from users’ screens, attempting to

remove a target fraction of all messages before

they float off the top of the screen.

 Gap Filling Aggressiveness: The system becomes

more or less aggressive in adding messages into

visual gaps on the screen, attempting to add

messages at approximately a target rate.

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2398

All dynamic adjustments are based on rolling averages,

which means that some natural variance in message volume

will occur. For example, a brief burst in incoming messages

from a user’s neighborhood will result in an increased

number of incoming messages. However, if the increase is

sustained, the user’s neighborhood will shrink to maintain a

desirable volume of messages.

SYSTEM DEVELOPMENT

To evaluate the Conversational Circles concept, we

implemented a web based live stream viewing platform. For

the live video stream we used a Wowza Media server

(https://www.wowza.com). We embedded the video stream

on a web page using video.js (http://www.videojs.com). We

built a text chat that implements the Conversational Circles

concept as well as a standard text chat mode for

comparison. The text chat backend was a Firebase Database

(https://firebase.google.com), which allowed for easy real-

time synchronization of data among clients, and required no

server-side programming. We built the text chat client using

plain HTML and JavaScript.

We also built an Android streaming application to enable us

to test the system. The streaming application was similar to

commercial applications, featuring a full-screen video

preview with incoming chat messages from users overlaid

at the bottom. It has two modes, one that shows all

incoming user messages, and one that shows only the three

most popular messages in the system. Both allow the

streamer to “accept” a message, which highlights it in a

green color on the streaming and viewing clients. The

streamer could not send text messages; they communicated

verbally.

To investigate a more fine-grained understanding of how

the system compared with traditional text chat systems we

implemented settings to control the behavior of the system:

 Throttling: When on, users see only messages

from their neighborhood, plus popular ones from

elsewhere on the Conversational Circle. When off,

users see all messages.

 Top Three: When on, users see a section at the

top of their screens showing the three messages

with the most upvotes currently in the system, and

the streamer sees only these three messages. When

off, users do not see the top three section, and the

streamer sees all incoming messages.

USER STUDY

We conducted a study of the Conversational Circles system

to understand whether it made it easier for users to process

and interact with the text chat, and whether it enabled the

most salient messages to be shown to the streamer. We

experimented with the two system settings (throttling and

top three) as factors, each having two levels (on and off).

This resulted in a 2x2 design with the following four

conditions:

 Condition A: throttling on, top three on, the full

realization of the Conversational Circles concept.

 Condition B: throttling off, top three on.

 Condition C: throttling on, top three off.

 Condition D: throttling off, top three off, similar

to how current services such as Periscope operate.

Figure 3 shows the viewing experience for each of the

conditions, and the video figure provides a sample of each

condition.

We chose a between-subjects design because we asked the

streamer to show similar content for each condition,

meaning that a within-subjects design would be susceptible

to ordering effects. Given that we needed large numbers of

viewers in each condition, it would have been challenging

to counter the ordering effects by running trials in different

condition sequences. We recruited about 180 viewers via

Mechanical Turk for each condition, who were not allowed

to participate in more than one condition. We returned to

the same local aviation museum with the same streamer.

Figure 3 (l-r) The chat system as it appeared in Condition A (throttling on, top three on), Condition B (throttling off, top three on,

Condition C (throttling on, top three off), and Condition D (throttling off, top three off)

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2399

https://www.wowza.com/
http://www.videojs.com/
https://firebase.google.com/

Measures

We asked users to answer a series of questions about their

experience after the live streaming experience. Most were

Likert questions, but a few were asked as a balance between

two competing factors. For the balance questions, the

midpoint of the scale is a good balance. We asked

participants questions in four areas:

 Volume of incoming messages: ability to read all

messages, balance between too many and too few

messages, balance between messages and video.

 Ease of use: ability to like messages, reply to

messages, understand which messages the

streamer was responding to

 Effectiveness of upvoting: of the text messages

which got many upvotes, how many were

important and how many were unimportant

 Connectedness among viewers: ability to

understand what other viewers liked, sense of

community

To test users’ perception of throttling we asked them to

estimate how many people were viewing and

communicating with them. We also asked participants for

open ended feedback, and collected logs of all system

interaction.

Participants

We used Amazon’s Mechanical Turk to recruit 200

participants for each condition to view the live stream.

Mechanical Turk has previously been used for gathering

feedback on prototypes [9]. While Mechanical Turk does

allow less control than a lab study, it enabled us to recruit

hundreds of participants and test at a scale which would not

have been possible in a lab study. We instructed the users as

follows: “You will be viewing a stream for at least 15

minutes and sharing your requests and comments along with

other viewers also watching the live stream. You can

communicate with each other via a text chat tool. Feel free to

ask questions, express your reactions, request what you'd like

to see, or interact with the other viewers. After 15 minutes,

you can stop watching the live stream and complete the HIT

by filling out a survey about your experience.” The

questionnaire was short, requiring no more than 10 minutes

to fill out, resulting in a total task time of about 25 minutes.

We paid the users $5 for participating in the experiment,

which is consistent with a fair minimum wage of $10/hour.

Since some participants who signed up for the experiment

ended up not doing the task after all, and we could not

replace them in time to view the stream concurrently with

everyone else, we ended up with slightly fewer participants

in each condition. The actual number of participants for each

condition was 185 for Condition A, 177 for Condition B, 179

for Condition C, and 176 for Condition D.

RESULTS

Questionnaire Data

Figure 4 shows the mean values for the survey questions

across conditions. We performed a two-factor multivariate

ANOVA on the Likert scale survey questions, with throttling

and top three as factors. Each factor had two levels (on/off).

Although the group sizes differ slightly, ANOVAs are robust

to slightly uneven group sizes for main effects [5].

We found several effects of throttling. Throttling

significantly increased the ability to read messages

(F1,1=198.904, p≈.000, ηp
2=.239), appropriateness of the

number of messages (F1,1=381.916, p≈.000, ηp
2=.376), and

balance between messages and video (F1,1=11.834, p=.001,

ηp
2=.018). It also increased ease of use as measured by

increased ability to understand what messages the streamer

was responding to (F1,1=27.865, p≈.000, ηp
2=.042), ease of

upvoting (F1,1=85.908, p≈.000, ηp
2=.119), ability to reply to

other viewers (F1,1=16.204, p≈.000, ηp
2=.025), and sense of

what was popular with other viewers (F1,1=5.721, p=.017,

ηp
2=.009).

1

1.5

2

2.5

3

3.5

4

4.5

5

I was able to
read all the

text
messages

I thought the
messages
that got

many likes
were

important

I thought the
messages
that got

many likes
were NOT
important

I understood
which

messages the
streamer was
responsing to

I could
upvote

messages
easily and
accurately

I could reply
to messages

easily

I had a
strong sense
of what was
popular with

other
viewers

I felt there
was a strong

sense of
community
in viewing
this stream

I felt the
balance

between too
few and too

many
messages

was

I felt the
balance in

screen space
used by the
text and the
video was

Condition A Condition B Condition C Condition D

Figure 4 Means (±SE) for questionnaire questions. All questions used a Likert scale from Strongly Disagree (1) to Strongly Agree

(5), except the last two questions regarding balance, where the midpoint of the scale (3) represents a good balance

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2400

Table 1 Portion of requests receiving upvotes compared to other messages

Mean estimates for number of people users were

communicating with were 46 in Condition A, 100 in

Condition B, 42 in Condition C, and 80 in Condition D.

The estimates were approximately twice as high on average

when throttling was turned off. These differences are not

statistically significant, as variance in the guesses is high.

Interestingly, users underestimated the actual number of

viewers (the number of simultaneous viewers was between

150 and 175 for the majority of each stream).

We also found correlations between showing the top three

and efficacy of the upvoting system. Specifically, adding

the top three section increased agreement that messages

which got more likes were more important (F1,1=9.833,

p=.002, ηp
2=.015), ability to understand what messages the

streamer was responding to (F1,1=23.446, p≈.000, ηp
2=.015),

and feelings of community (F1,1=3.963, p=.031, ηp
2=.007).

Throttling and top three each contributed to a more usable

experience that also had a sense of community. All other

effects of condition on the questionnaire responses were not

significant at p=.05. No interaction effects were significant

at p=.05.

Chat Data

We performed several analyses on the logged chat data to

get an objective sense of user behavior. Prior to analysis of

the logged chat messages, we filtered the dataset to only

messages from the most active 10 minutes of each

streaming session, as defined by number of simultaneous

viewers. We did this to focus on the most challenging level

of simultaneous interaction in each condition. The start and

end of each session do not represent a typical scenario for a

chat system because many users are greeting each other or

saying goodbye during these portions.

We wanted to explore if upvoting helped to highlight

important content. The concept of important messages is

difficult, if not impossible, to define, especially because the

importance of messages may vary widely with the content

of the stream. However, for our study, one type of message

that is important is requests, such as “Show us the space

shuttle” or “Hold the camera closer to the display”. These

requests are important because they are how viewers

influence the stream. Unlike some other messages, they

need the streamer – not other viewers – to see them to

accomplish their goal. Because requests are a good example

of what we believe is important content, we categorized all

messages from the chat logs as requests or other content.

Because throttling affects the number of people that see a

message, comparing amounts of upvotes across conditions

is not a fair measure. Therefore, we classified all messages

as having received no upvotes, or having received at least

one upvote. For each condition, we performed a Chi-Square

test to see if the fraction of request type messages with at

least one upvote was significantly different from the

fraction of other types of messages with at least one upvote.

Table 1 shows the results of these tests. In conditions A and

B (which both show the top three), a significantly higher

fraction of requests got upvoted than other messages. In

conditions C and D, the difference was not statistically

significant. We conclude that the top three section

encourages some kinds of content to be upvoted more than

other kinds, meaning that upvoting can be a helpful

mechanism for highlighting what is important.

We also analyzed user participation across conditions. One

measure of user participation in social media is lurking. We

counted the number of lurkers, defined as users who sent

zero text messages, in each condition. We used Pearson

Chi-Square test to check for significant differences. When

the top three section was off, 20.6% of users were lurkers,

versus 20.3% when it was on. This difference was not

statistically significant (Χ2(1, N = 836) = .016, p = .901).

When throttling was off 25.6% of users were lurkers,

compared to only 14.8% when throttling was on. This

difference is statistically significant (Χ2(1, N = 836) =

14.801, p ≈ .000). The data reflect that throttling increased

participation by decreasing the number of lurkers.

DISCUSSION

Increasing Usability

As expected, throttling the number of messages that users

see increased the usability of the system in a number of

ways. First, users were able to understand the chat better

when throttling was on. Participants reported that they were

able to read a higher portion of the messages appearing on

screen, and have a better sense of what was popular with

other viewers in the throttling conditions. Participant

B156’s feedback from the unthrottled condition explained

the problem with a traditional text chat at high scale: “there

should be a better way to communicate with others. The

messages, at certain points, were moving way to [sic] fast to

be able to read thoroughly and it makes it hard to reply or

see replies from others.”

Second, throttling allowed users to more easily interact with

the content on screen. When throttling was turned off,

Condition
Fraction of requests with at

least one upvote

Fraction of other messages

with at least one upvote
Pearson Chi-Square Comparison

A 35% (18/51) 23% (168/740) Χ2(1, N = 791) = 4.206, p = .040

B 74% (29/39) 41% (299/724) Χ2(1, N = 763) = 16.504, p ≈ .000

C 32.% (11/34) 28% (169/614) Χ2(1, N = 648) = 0.374, p = .541

D 39% (26/66) 42% (330/787) Χ2(1, N = 853) = 0.161, p = .688

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2401

participant D132 noted that, “it was very, very difficult to read

most of the messages, let alone click on a specific one.” When

throttling was turned on, users reported increased ease of

reading and upvoting. In the throttled condition, messages

move up the screen at a steady pace. This is possible because

the rate of incoming messages is controlled. When throttling is

off, messages cannot move at a steady pace because variance

in the rate of incoming messages means they may need to

move out of the way quickly to make room for incoming

messages. Because throttling allows messages to move in a

predictable way on the screen, it is easier for users to click on

them to upvote. The increased ability to interact with content

when throttling is on is likely a result of the fact that there is

less content and that it moves more predictably on screen.

Throttling also reduced the portion of lurkers. This may be

because too many messages intimidate some would-be

contributors, or because they feel that when there is a high

volume of messages their message will not matter anyway.

Finally, users indicated directly that throttling results in a more

manageable number of messages. When throttling was on

users indicated that the balance between text messages and

video was better, and that the number of messages shown was

more appropriate. Participant A80 said in the feedback that

“the text stream wasn’t super fast but not slow either.” It is

important to note that while our results indicate that throttling

was beneficial, the chat is not artificially made too slow by

throttling. We describe this balance further in the Potential

Optimizations section below.

Supporting Community

The use of throttling and a top three section also resulted in

some positive signals around community among viewers and

with the streamer. Throttling resulted in fewer lurkers,

suggesting a more inclusive and engaged environment.

Interfaces that encourage more people to participate give more

users a chance to feel like a meaningful part of a community.

The presence of the top three section increased the sense of

community among viewers according to questionnaire

responses. This may be because the top three section is the

same for all viewers, and represents the result of their

collective interactions, giving users a tangible outcome of the

group’s messaging and voting behaviors. As mentioned

previously, throttling increased the ability to reply to messages

while the top three section increased the ability to understand

what messages the streamer was referring to. Both of these

differences suggest that throttling and the top three section aid

in forming community with other viewers and the streamer.

Highlighting Salient Messages

The Conversational Circle concept intentionally reduces the

number of messages shown to the streamer, thus lowering the

amount of information the streamer has to process and their

cognitive effort. However, it relies on the assumption that

upvoting is useful in promoting the messages which are

important for the streamer to see. Questionnaire responses

indicate that adding the top three section increased user

agreement that the messages that got many likes were

important. Participant A98’s feedback elaborated on the effect

of voting: “the experience is tailored to those who are

watching. By this I mean that if the majority want to view a

specific exhibit, then that text will be voted on, and acted upon

by the streamer.” Results from coding the chat messages

indicate that when the top three section is present, requests (a

common type of message that is important for the streamer)

get upvotes more often than other kinds of messages, another

indicator that voting is useful in differentiating among different

types of messages.

The top three section may increase the effectiveness of voting

in highlighting salient content for several reasons. It provides a

clear visual indicator of the end result of voting. As users

upvote content, they can see the most popular messages move

up into the top three section. By contrast, without a top three

section, the only indication in the interface of the impact of

upvoting is the incremented vote counter shown while the

message is displayed. Further, the top three section allows the

streamer to easily see which content is receiving the most

upvotes. Without the top three section, the streamer must

attempt to pick out popular messages from a large stream of

incoming messages, in addition to managing their camera and

responding to viewers. Beyond simply helping the streamer,

this may increase user desire to upvote because the results of

upvoting are more easily actionable by the streamer.

Because the streamer was a member of the research team

familiar with the goals of the study, we cannot make a formal

comparison among conditions from the streamer’s perspective.

Informally, the streamer found that the top three section was

useful in reducing the effort needed to monitor the chat,

allowing him to concentrate on navigating the museum and

framing the camera. Thus, he felt it gave him a better sense of

the chat because it is difficult to pick out important messages

from a fast-moving text chat while controlling the camera and

walking around at the same time.

Potential Optimizations

The Conversational Circle system exposes several parameters

to tune its behavior. These include the target rate of incoming

messages for a user, how many unpopular messages to fade

out of view, and how many popular messages to add in the

gaps. For our study, we set these parameters based on

estimates from our prototype studies about how much content

is appropriate for users to process. We also built a chat

simulator that created fake messages and upvotes which

allowed us to experiment with the system during development

and tune the parameter values to increase the usability of the

system.

One indicator of how well the parameters are set is

participants’ response to the questionnaire questions regarding

the balance of text messages. On the scale for this question, 1

represents too many messages, 5 represents too few messages,

and 3 means the number of messages was about right. In the

throttled conditions, users responded a bit below the middle of

the scale. The mean response was 2.59 for Condition A and

2.55 for Condition C, indicating the volume of messages was

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2402

close to ideal but still a bit high. This is an improvement than

the non-throttled Conditions B and D where the means were

1.47 and 1.57 respectively. Though the responses were better

when throttling, they were still below the ideal value,

suggesting room for optimization.

Tuning the balance between the number of messages from a

user’s neighborhood and the number of popular messages

which get added into the gaps is another potential optimization.

While we did not conduct a formal comparison of different

values for these settings, we expect they may change the

efficacy of the upvoting system and outcomes of community.

LIMITATIONS

The goal of our system is to provide a useful and manageable

way for a large number of users to interact while viewing a live

stream. To study the system, we used an audience size that is at

or above what streamers have reported as difficult to manage.

However, live streams today may experience audiences in the

hundreds of thousands, and it is challenging to recruit study

participants to watch a live stream simultaneously at that scale.

Yet, we do believe that our studies simulate interactions in a

viewing audience that is larger than the number of study

participants.

We used crowd sourcing to recruit our study participants, who

have different motivations and affordances than regular

viewers. Because they are being paid to participate in the study

they may feel obligated to interact with the stream, thus

sending more messages than they might otherwise. The

relatively low level of lurking (14.8%-25.6%) is another

indicator of increased interaction over a typical chat forum.

The participants also completed the task in a web browser on

their computers, using a keyboard and mouse to interact. In

contrast, many streaming services focus on mobile devices,

where users must type messages on a small touch keyboard.

Because of potential feelings of obligation to participate, and

the high-speed input afforded by physical keyboards, our

participants may have generated more content than a typical,

real world, mobile viewer.

Our study considered only one kind of subject material for a

live stream. Because we streamed from a museum, many

messages were about the airplanes in the museum. However,

content in live streams varies widely. For example, in a stream

from a public figure or celebrity, the chats may have many

questions that the viewers want answered. On the other hand, a

stream may show a live event unfolding such as a rock concert,

where most of the chat messages may just be among viewers

reacting to and discussing the performance. Because the type

of messages may be different with other types of streams, users

may use an upvoting system differently, and it would be

important to confirm that it still highlights the most salient

messages.

Finally, our study focused on the viewer experience using the

Conversational Circles system. Although our streamer

indicated a preference for the top three conditions, where the

most popular messages are shown to the streamer, we cannot

make any firm conclusions about how other streamers would

react to the Conversational Circles concept. Doing so would

require replicating the current study with a number of different

streamers, each requiring hundreds of viewers, which we leave

for future work.

FUTURE WORK

The current study provides an initial evaluation for the

Conversational Circle concept, but more work is needed to

understand how the Conversational Circles concept translates

to other types of content, and how it scales to even larger

audience sizes.

The study also exposed potential improvements to increase the

utility of Conversational Circle concept. First, users often

asked questions that had already been answered by the

streamer. This may be because they missed the first time the

question was answered, perhaps because they joined the

stream afterwards. One example of this in the current study

was users asking where the museum was located. Users

continued to ask this question even after it was answered

multiple times. In the case of this and other common questions,

providing metadata such as location may help users understand

the content of a stream better and reduce repeated questions.

Alternatively, a way of tracking questions that were already

answered and relaying the response to users who repeat a

previous question would provide a more general solution to the

problem.

Finally, throttling messages can be accomplished in several

ways, such as randomly selecting a subset of all incoming

messages, selecting every nth message, or creating

neighborhoods which randomly add or remove users. Tracking

people who like or comment at similar times or importing pre-

existing social media connections could also be used to form

neighborhoods. We designed our neighborhood system on a

circle because as the neighborhood size changes, the core

neighbors (closest to each other on the circle) remain. We did

not evaluate our system in comparison to different methods of

forming neighborhoods for throttling. A future study in which

more users join, leave, and even rejoin the stream during the

broadcast would provide better validity for evaluating this

component of the Conversational Circle system.

CONCLUSION

We have designed a new type of text chat, Conversational

Circles, which offers better usability than a standard text chat

with many concurrent users, without sacrificing the ability for

all users to participate. Our testing confirms that the

Conversational Circle system offers advantages over a

standard text chat. One of the key aspects of live streaming that

differentiates it from other forms of social media like video

sharing over YouTube or vlogging is that viewers can

influence the content of the stream as it happens. While some

other approaches to text chat in large-scale live streams focus

on limiting interaction, Conversational Circles gracefully

scales to larger numbers of viewers while giving all users the

chance to interact with media as they view it.

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2403

ACKNOWLEDGEMENTS

We thank the hundreds of anonymous Amazon Mechanical

Turk workers who gave us feedback on our prototypes.

REFERENCES

1. Jonathan Bishop. 2007. Increasing participation in online

communities: A framework for human–computer

interaction. Computers in Human Behavior. 23 (2007),

1881–1893.

2. Susan E. Brennan. 1998. The Grounding Problem in

Conversations With and Through Computers. In Social

and cognitive psychological approaches to interpersonal

communication. S. R. Fussell and R. J. Kreuz (Eds.)

Lawrence Erlbaum, Hillsdale, NJ, pp. 201-225.

3. Arvid Engström, Mark Perry, and Oskar Juhlin. 2012.

Amateur vision and recreational orientation: Creating

live video together. In Proceedings of the SIGCHI

conference on Computer Supported Cooperative Work

(CSCW 2012), 651-660.

http://doi.acm.org/10.1145/2145204.2145304

4. Baldo Faieta, Bernardo Huberman, and Paul Verhaeghe.

2006. Scalable online discussions as listening

technology. In Proceedings of the 39th Annual Hawaii

International Conference on System Sciences

(HICSS'06), 15c-15c.

http://doi.org/10.1109/HICSS.2006.427

5. Andy Field. 2013. Discovering statistics using IBM

SPSS statistics. Sage.

6. Elodie Fichet, John Robinson, Dharma Daily, and Kate

Starbird. 2016. Eyes on the Ground: Emerging Practices

in Periscope Use during Crisis Events. In Proceedings of

the 13th Annual Conference for Information Systems for

Crisis Response and Management (ISCRAM 2016)

7. William A. Hamilton, Oliver Garretson, and Andruid

Kerne. 2014. Streaming on Twitch: Fostering

participatory communities of play within live mixed

media. In Proceedings of the SIGCHI conference on

Human Factors in Computing Systems (CHI 2014),

1315-1324.

http://doi.acm.org/10.1145/2556288.2557048

8. William A. Hamilton, John C. Tang, Gina Venolia, Kori

Inkpen, Jakob Zillner, and Derek Huang. 2016. Rivulet:

Exploring Participation in Live Events through Multi-

Stream Experiences. In Proceedings of the ACM

International Conference on Interactive Experiences for

TV and Online Video (TVX 2016), 31-42.

http://doi.acm.org/10.1145/2932206.2932211

9. Brian McInnis and Gilly Leshed 2016. Running user

studies with crowd workers. interactions. 23(5), 50-53.

http://dx.doi.org/10.1145/2968077

10. Gustavo Nascimento, Manoel Ribeiro, Loic Cerf,

Natalia Cesario, Mehdi Kaytoue, Chedy Raissi, Thiago

Vasconcelos, Wagner Meira. 2014. Modeling and

Analyzing the Video Game Live-Streaming Community.

In Proceedings of the 9th Latin American Web Congress

(LA-WEB 2014), 1-9.

http://doi.ieeecomputersociety.org/10.1109/LAWeb.201

4.9

11. Tasneem Nashrulla. 2016. We Blew Up A Watermelon

And Everyone Lost Their Freaking Minds. (8 April

2016). Retrieved September 8, 2016 from

https://www.buzzfeed.com/tasneemnashrulla/we-blew-

up-a-watermelon-and-everyone-lost-their-freaking-min

12. Frank Palotta. 2016. Trump Tower climber keeps media

networks hanging on live. (10 August 2016). Retrieved

August 17, 2016 from

http://www.crossroadstoday.com/story/32732450/trump-

tower-climber-keeps-media-networks-hanging-on-live

13. Jenny Preece, Blair Nonnecke, and Dorine Andrews.

2004. The top five reasons for lurking: Improving

community experiences for everyone. Computers in

Human Behavior. 20 (2004), 201–223.

14. Stuart Reeves, Christian Greiffenhagen, Martin

Flintham, Steve Benford, Matt Adams, Ju Row-Farr,

Nick Tandavanitj. 2015. I’d Hide You: Performing Live

Broadcasting in Public. In Proceedings of the SIGCHI

conference on Human Factors in Computing Systems

(CHI 2015), 2573-2582.

http://doi.acm.org/10.1145/2702123.2702257

15. Martin Saveski, Sophie Chou, and Deb Roy. 2016.

Tracking the Yak: An Empirical Study of Yik Yak. In

Proceedings of the Tenth International AAAI Conference

on Web and Social Media (ICWSM 2016), 671-674.

16. John C. Tang, Gina Venolia, and Kori Inkpen. 2016.

Meerkat and Periscope: I Stream, You Stream, Apps

Stream for Live Streams. In Proceedings of the SIGCHI

conference on Human Factors in Computing Systems

(CHI 2016), 4770-4780.

http://doi.acm.org/10.1145/2858036.2858374

17. Bogdan Vasilescu, Alexander Serebrenik, Prem

Devanbu, Vladimir Filkov. 2014. How social Q&A sites

are changing knowledge sharing in open source software

communities. In Proceedings of the ACM conference on

Computer Supported Cooperative Work (CSCW 2014),

342-354. http://doi.acm.org/10.1145/2531602.2531659

18. David Vronay, Marc Smith, and Steven Drucker. 1999.

Alternative Interfaces for Chat. In Proceedings of the

12th annual ACM symposium on User interface software

and technology (UIST 1999), 19-26.

http://doi.acm.org/10.1145/320719.322579

19. Justin D. Weisz, Sara Kiesler, Hui Zhang, Yuqing Ren,

Robert E. Kraut, and Joseph A. Konstan. 2007.

Watching together: Integrating text chat with video. In

Proceedings of the SIGCHI conference on Human

Factors in Computing Systems (CHI 2007), 877-886.

http://doi.acm.org/10.1145/1240624.1240756

Designing for the Workplace CHI 2017, May 6–11, 2017, Denver, CO, USA

2404

http://doi.acm.org/10.1145/2145204.2145304
http://doi.org/10.1109/HICSS.2006.427
http://doi.acm.org/10.1145/2556288.2557048
http://doi.acm.org/10.1145/2932206.2932211
http://dx.doi.org/10.1145/2968077
http://doi.ieeecomputersociety.org/10.1109/LAWeb.2014.9
http://doi.ieeecomputersociety.org/10.1109/LAWeb.2014.9
https://www.Alpha XR.com/tasneemnashrulla/we-blew-up-a-watermelon-and-everyone-lost-their-freaking-min
https://www.Alpha XR.com/tasneemnashrulla/we-blew-up-a-watermelon-and-everyone-lost-their-freaking-min
http://www.crossroadstoday.com/story/32732450/trump-tower-climber-keeps-media-networks-hanging-on-live
http://www.crossroadstoday.com/story/32732450/trump-tower-climber-keeps-media-networks-hanging-on-live
http://doi.acm.org/10.1145/2858036.2858374
http://doi.acm.org/10.1145/2858036.2858374
http://doi.acm.org/10.1145/2531602.2531659
http://doi.acm.org/10.1145/320719.322579
http://doi.acm.org/10.1145/1240624.1240756

