
Understanding Rack-Scale Disaggregated Storage

Sergey Legtchenko Hugh Williams Kaveh Razavi∗ Austin Donnelly

Richard Black Andrew Douglas Nathanaël Cheriere∗ Daniel Fryer∗ Kai Mast∗

Angela Demke Brown† Ana Klimovic∗ Andy Slowey Antony Rowstron

Microsoft Research

Abstract
Disaggregation of resources in the data center, especially
at the rack-scale, offers the opportunity to use valuable
resources more efficiently. It is common that mass stor-
age racks in large-scale clouds are filled with servers with
Hard Disk Drives (HDDs) attached directly to each of
them, either using SATA or SAS depending on the num-
ber of HDDs.

What does disaggregated storage mean for these
racks? We define four categories of in-rack disaggre-
gation: complete, dynamic elastic, failure, and config-
uration disaggregation. We explore the benefits and im-
pact of these design points by building a highly flexible
research storage fabric, that allows us to build example
systems that embody the four designs.

1 Introduction

Resource disaggregation decouples resources such as
storage, compute and memory, allowing independent op-
timization and resource scaling. The cost and efficiency
benefits have attracted interest from both academia and
industry [11, 18, 13, 14, 12, 6, 10]. Clouds already
use high-level compute and storage disaggregation, with
Amazon S3 [1] and Azure Storage [5] providing storage
services that are independent of compute.

In contrast, at a rack-level, the storage racks used for
cloud storage are not internally disaggregated. They are
composed of independent servers, each physically at-
tached to a set of Hard Disk Drives (HDDs) or Solid
State Drives (SSDs) using SATA or SAS. The number
of drives per server and their type can vary (between 10
and 40 is common), and the exact configuration is based
on the workload, drive capacities, network link capacities
and so forth. Large cloud providers can use multiple stor-
age rack configurations to service different workloads. In

∗Work done while on an internship.
†Work done while a visiting researcher.

these environments, data redundancy across a set of racks
or (even) data centers is preferred to server-level redun-
dancy (like RAID) [9].

This design implies explicit ownership of each drive
by the server to which it is attached. Only that own-
ing server can issue IOs to the attached drive. There is
no sharing of the physical drive between servers at the
hardware-level; there is no disaggregation since there is
strict ownership of physical resources. The higher layers
of the software stack control data placement and choose
when data written to one drive is migrated to another
drive, based on age, IO rate, etc.

What could disaggregation at the rack-level mean for
HDD-based cloud storage? Disaggregation breaks this
fundamental strong ownership principle currently used;
breaking will incur some pain, but is it worth the gain?
To help us understand this we propose four different dis-
aggregation design points for cloud storage:

Complete disaggregation: What happens if we
move to an extreme view of disaggregation and assume
that, at the limit, any drive can be connected to any server
per IO? The frequency of reconfiguration will be high,
potentially per-IO.

Dynamic elastic disaggregation: What happens if
we assume that a drive will be connected for long enough
to service multiple IOs, but the number of drives con-
nected to a server can vary over time? The frequency of
reconfiguration will be minutes to hours.

Failure disaggregation: What happens if we mi-
grate drives to servers only on failures, to make failure
handling more efficient? The frequency of reconfigura-
tion will be days (hopefully!).

Configuration disaggregation: Can disaggregation
enable service-level configuration? Reconfiguration can
occur at deployment time, or if a rack is repurposed to
support a different service. The frequency of reconfigu-
ration will be long, on the order of months to years. In
contrast to the other three, this would not need to be con-
trolled by an online controller monitoring the rack load



Figure 1: One of the Flexible Fabric testbeds.

or failures.
We created a new research storage fabric expressly to

explore these disaggregation types. We refer to the stor-
age fabric as the Flexible Fabric. It offers a generic,
flexible, and reconfigurable (at a millisecond granularity)
storage fabric supporting SAS and SATA PHYs. It uses a
custom switch with 160 ports, and each port can be con-
nected to a server Host Bus Adapter (HBA), a SAS ex-
pander, or a drive. The switch allows any pair of ports to
be connected at the physical level. This flexibility allows
us to build many different systems to explore the benefits
of disaggregation. However, it should be noted that we
are not advocating that the storage fabric we have built
should be widely adopted or deployed (indeed, it should
not be!). It is a research platform explicitly designed for
efficient exploration of the functionality of future fabrics
supporting disaggregation.

Before considering the four disaggregation types, we
describe the Flexible Fabric and examine the core perfor-
mance it provides.

2 The Flexible Fabric

The core of the Flexible Fabric is a 160-port switch,
which implements a circuit switch abstraction. The
switch allows any port to be connected to any other port.
When any two ports are connected, we refer to them as
being mapped; when mapped, the electrical signal re-
ceived on each port is replicated at the other port. The
switch supports both SAS and SATA PHYs and is trans-
parent to all components connected to it. The switch has
an on-board ARM microcontroller that runs the switch
firmware and controls the switch. The firmware sup-
ports full and partial re-mapping. A full re-mapping con-
tains all the port-to-port mappings required. A partial
remapping allows incremental updates, only the ports to
be remapped are specified. When doing partial remap-
ping, any port-to-port mappings that remain unchanged

experience no interruptions. Once a new configuration is
loaded into the switch, it can execute a port remapping
in less than 50 ns independent of whether it is a full or
partial remapping. Figure 1 shows the switch in use in
one of the testbeds. To control the switch, we use a sim-
ple, centralized controller that can communicate with all
servers and the switch using a shared Ethernet network.
The controller reconfigures and interacts with the switch.
The storage fabric is a pure storage data plane.

We use two base testbed configurations: SATA config-
uration and SAS configuration. In the SATA configura-
tion, SATA HDDs or SSDs and SATA HBAs are con-
nected directly to the switch. This configuration is used
in most of the experiments. In the SAS configuration, we
connect a SAS HBA and SAS expanders to the switch.
HDDs are connected to the SAS expanders.

As a research platform, the advantage of the Flexi-
ble Fabric is its simplicity: the switch does not need
to handle PHY establishment, decoding or IO buffer-
ing. A consequence is that the PHY is established di-
rectly end-to-end between the components connected to
the switch, e.g., between the HBA and the drive. This
leads to PHYs being dropped when ports are remapped,
which has several implications. First, the PHY needs to
be re-established when two new ports are mapped to-
gether. We force the end-components to use SATA 3.0
or SAS 2.0 (or lower), which means the time taken to
establish the PHY is only a few hundred microseconds
(in contrast to more modern PHYs, like SAS 3.0, which
can perform link quality measurements when establish-
ing a PHY that can take as long as a second). Given the
seek time for an HDD is in the order of milliseconds,
a few hundred microseconds is a reasonable overhead.
Second, the rapid and frequent switching of drives con-
nected to an HBA is not a scenario widely tested by the
manufacturers. We found this crashed some HBAs and
drives, and others struggled to detect that the PHY had
been dropped in a timely manner (delays of 5+ ms).

For the SATA configuration, after experimenting with
several HBAs, we selected the Highpoint Rocket 640
Lite 4-port SATA 2.0 Internal PCI-e 2.0 x4 controller
cards (which have firmware from Highpoint and a Mar-
vell 9235 chipset). We experimented with a range of
HDD and SSD manufacturers and models. For most con-
figurations, we use OCZ TRION 100 SSDs, rather than
an HDD, as this SSD handles the switching better than
the other HDDs and SSDs that we tried.

For the SAS configuration used to understand config-
uration disaggregation, we use SuperMicro enclosures
with LSI SAS 2.0 Expanders and Attotech and LSI 3008
Fury HBAs. The enclosures are populated with a mixture
of Seagate and WDC Archival class HDDs [3]. We also
added another SAS Expander with all its ports connected
to the switch. This reconfigurable SAS topology allows



0
50

100
150
200
250
300

m
ill

is
ec

on
ds

Driver NTFS + Mount

Figure 2: Switch and mount time.

interconnecting SAS components on demand and offers
more flexibility than a traditional SAS switch could pro-
vide.

2.1 Base fabric performance

We now describe how we made the SATA configurations
performant and show micro-benchmark results. The
main challenge is to ensure that when a drive is attached
to an HBA, we minimize the latency between remap-
ping the ports and the drive becoming available to ser-
vice IOs. To address this challenge, we modified the
driver that interacts with the HBA controller card. We
used the Windows StorAHCI driver, the default storport
miniport driver that supports the SATA Advanced Host
Controller Interface (AHCI). Figure 2 shows several con-
figurations and the time taken for StorAHCI to register
that a drive is online and mount the NTFS filesystem. In
all columns, the time to mount NTFS is always approx-
imately 50 ms; we made no modifications to NTFS. In
Figure 2 StorAHCI shows the switch and mount time us-
ing a vanilla unmodified StorAHCI driver. It takes ap-
proximately 200ms for the drive to come online, four
times as long as it takes to mount the file system. We
changed StorAHCI to remove several timeouts to speed
up detection of the failed link (shown as No Timeouts)
which lowers the driver time to 90ms. In our experi-
ments, we found that an HBA port that had a drive con-
nected before switching to a new drive performed better.
The column Warm port shows this, and the online latency
drops to 10ms. We hypothesize that timeouts in the HBA
or SSD firmware trigger faster if the drive or HBA port
is already connected. The final optimization is to issue
a COMRESET from the StorAHCI driver to the HBA
when the server is informed by the controller that a drive
is being switched. The column COMRESET shows that
the latency drops to 1 ms. This is approximately 50%
higher than the theoretical lower bound.

To understand the impact of this switching latency, we

1

10

100

1000

4 64 1024 16384 262144

M
B/

s

Log Record Size (KB)

Not Switched
Switched

Figure 3: Switching versus static throughput.

ran an experiment using a worst-case workload. It uses
a single HBA SATA port and issues one read IO to an
attached SSD, and when it completes, a second SSD is
switched to the port. Another read IO is then issued, and
the process then repeats. We compared this to running
the same workload without swapping using a single SSD
but again waiting for each read IO to complete. Note that
we did not mount NTFS in either case.

Figure 3 shows the performance impact. On the x-
axis, we show the block size of read IO issued, using a
log scale. The y-axis shows the throughput in MB/sec,
again using a log scale. At 4KB the throughout is ap-
proximately halved when we switch the SSD, but at 4MB
and larger the throughput is comparable

It is important to remember that we are not proposing
using the Flexible Fabric in a production environment.
It is a research platform designed to allow us to eval-
uate scenarios enabled by storage disaggregation. The
performance it offers is such that we can investigate and
explore these scenarios. Next, we consider each disag-
gregation category in turn. Due to space constraints, we
do not show detailed performance results.

3 Complete disaggregation

What happens if we adopt an extreme view of disaggre-
gated storage, and assume that any IO for any drive can
be serviced by any server?

Setup: Using the SATA configuration, we built a
system that has n servers, each with k SATA ports con-
nected to the switch. There are then y SSDs connected to
the switch, such that nk << y. At any point in time, only
nk SSDs can be connected to a server. An SSD can only
service IO requests when it is connected to a server. The
controller uses a policy to select which SSDs are con-
nected to which servers on a per-IO basis. This explores
the feasibility of fine-grained per-IO load balancing.

Summary: We discovered a number of key chal-
lenges with this extreme form of disaggregation. As



shown in Figure 2 the file system mount times are high.
Under the assumption that the server attached to the drive
can change every IO, a very lightweight mount process
is needed. We experimented with storing all the file sys-
tem meta-data off the drive. Initially, we considered a
single global shared service that would be queried when
a drive was about to be attached to a server. For perfor-
mance, this can be done asynchronously before the drive
is physically attached, although care needs to be taken
to ensure meta-data consistency if another server already
has the drive attached. However, the rate of requests at
this service can be on the order of IOs across the data
center, and the meta-data transferred can be large.

We then designed a log-structured file system (a
Lightweight File System or LWFS) that used a form
of capabilities to control access. This design is block-
orientated, based on the observation that many services
in the data center use service-level meta-data to handle
content identification. This still requires a central meta-
data service, but storage servers no longer need to query
the service at all. Instead, services using the storage in-
teract with the meta-data service per-file, and then can in-
dependently issue multiple IOs to a storage server with-
out contacting the service again. Whenever a storage
server receives an IO for a drive, it can locally and inde-
pendently check that the received IO is permitted using
a capability token. The storage server still needs to en-
sure the correct drive is online and to read a key from the
drive, but this requires only a single IO read when a drive
comes online.

LWFS reduces the overhead, but the storage client still
needs to dynamically identify the server to which the
drive required for the IO is currently attached. To make
this more efficient, we decided on a two-layer indirec-
tion approach. Each file is mapped to a specific rack
and driveId. A rack-local service is then used to map
from the driveId to the server that should be contacted to
service the request. This means that a higher-level ser-
vice can cache the rackId and driveId, and then only look
up the driveId-to-storage-server mapping on a rack-local
service.

The overhead of determining the mapping on the crit-
ical path incurs a high overhead per IO. It seems funda-
mental that such overheads will be needed. Looking at
network bandwidth trends and hardware costs, it is dif-
ficult to come up with a convincing argument that the
challenges and increased complexity and overheads jus-
tify such fine-grained per-IO remapping of drives.

4 Dynamic elastic disaggregation

What happens if we assume that a drive will be connected
to a server for long enough to service several IOs, but
the number of drives connected to a server can vary over

time?
Setup: Using the SATA configuration, we built a

system that has n servers, each with k SATA ports con-
nected to a custom switch. There are then nk/3 SSDs
connected to the switch. At any point in time, all drives
need to be connected to a server or transitioning between
servers. In this configuration, a third of the n servers are
needed for all drives to be connected. So, we are examin-
ing if right-provisioning of CPU and memory resources
to support a dynamic workload is useful.

Summary: This configuration significantly re-
duces the complexity compared to per-IO disaggrega-
tion. Drives are attached to storage servers for significant
periods of time (e.g., minutes to hours). We can imple-
ment throughput proportionality of servers to workload;
when the aggregate set of storage servers are underuti-
lized (for example because of a diurnal traffic pattern),
some servers can be detached from all their drives and
used for non-storage tasks. The rate of drive migration
between the storage servers is lower; services can cache
information about which drives are attached to which
storage server, reducing load and removing the need to
query meta-data servers on the critical IO path. The
NTFS mount overhead could also be more reasonable if
the configuration frequency is on the order of hours.

Traditionally, in the cloud, isolation of storage and
compute is an advantage. A cloud provider does not
want random tenant workloads to potentially cause per-
formance (or security) issues by sharing storage servers.
Allowing under-utilized storage servers to be reallocated
to compute could provide benefit. There is a small in-
crease in complexity, but it can be mitigated, especially if
the rate of change is dampened. Other advantages could
be to reduce power-on-hours for servers that may reduce
power costs and hardware failure rates.

5 Failure disaggregation

Can we use disaggregated storage to make failure han-
dling more efficient?

Setup: Using the SATA configuration, we built a
system that has n servers, each with k SATA ports con-
nected to the switch. There are then (nk/2) + δ SSDs
connected to the switch. Under no failures, there are k/2
SSDs connected to each server. If an SSD fails, then one
of the δ unused SSDs can be used, providing rack-wide
hot spares. On a server failure, the k/2 SSDs attached
to it are redistributed across the remaining servers, either
to one server, or distributed across the remaining servers.
Due to growing HDD capacities, the amount of data to
recover after an HDD or server failure is increasing. We
explore whether disaggregation can address this issue.

Summary: The traditional approach to server fail-
ure in cloud storage is to simply assume (after some time



window) that all the drives have failed and rebuild the
lost files. As network bandwidth capacities increase, the
number of drives per storage server will increase. Con-
currently, the capacity per drive is increasing, but for
HDDs the throughput is constant. Hence, the through-
put per TB is dropping. If a server fails, rebuilding the
data stored on it has an increasing overhead. Hence, it
could be helpful to migrate the drives attached to a failed
storage server to another storage server. To minimize the
impact on normal operation, the traditional service in-
frastructure used today can be used to find the server to
send an IO. On a server failure, this service can handle
the change: the rate of updates to that server will be on
the order of the number of storage server failures.

This approach seems interesting as there should be
no real impact on the performance of the normal oper-
ation. When failures occur, the impact should be low.
Given many designs of cloud storage, the drives of a
failed server can be distributed across all the other stor-
age servers in a rack, so the extra load per non-failed
server can be small. As a concrete example, HDFS has
DataNodes, which store data, and send Blockreports [8]
describing the data blocks they store to a NameNode. On
DataNode server failure, the inaccessible drives could be
migrated to other DataNodes, who then just announce the
blocks via a Blockreport in the usual way to the NameN-
ode.

6 Configuration disaggregation

Can we use disaggregation to dynamically provision a
rack, and infrequently reconfigure it during its lifetime?

Setup: Using the simple SAS configuration, we had
n servers with k SAS ports connected to the switch, with
k/2 SAS expanders, each connected to the switch with
a single uplink. Each SAS expander can be connected
to a single SAS port on any server. Each expander is al-
ways connected to a server or being transitioned between
servers. Expanders are transitioned only when the rack
is being reconfigured for a different role.

Summary: This is the least demanding scenario, the
reconfiguration potentially happens only once when the
rack is first deployed. This allows the ratio of drives to
servers to be varied per service type using a single hard-
ware rack configuration. When reconfigured the drives
are assumed to be reformatted. This scenario does not
require an online controller, as the configuration happens
at deployment or redeployment time. We expect the con-
figuration to hold across power cycling the rack.

The challenge is the additional cost of provisioning
the storage fabric to be able to support reconfiguration,
and how efficiently freed resources in the rack can be
used. If a currently deployed storage stack can handle
different ratios of storage servers to drives, then no soft-

ware changes in the deployed environment are needed,
and this would be the case, for example, with HDFS.

7 Related work

We are not aware of prior work looking specifically at
building storage fabrics designed to support disaggrega-
tion within the rack for HDD storage. For the foresee-
able future, it is expected that the majority of data will
be stored in the cloud on HDDs [4]. Memory disaggre-
gation at the rack scale has been considered extensively,
from proposals for architectures [16, 17, 18, 14] to work
looking at performance that would need to enable disag-
gregation [6, 7]. We see all this work as orthogonal to
our work, where we have focused on what disaggrega-
tion could mean for HDD-based storage.

Some of the most related work is work by Klimovic
et al. [11], looking at how to build efficient flash-based
Network Attached Storage (NAS). This work is closely
related to high-performance enterprise NAS, where the
storage and the compute are separated. The focus of this
work is exploring how disaggregation can be used within
a rack, to support HDD-based storage for the cloud.

Some systems offer variants of failure disaggregation.
For example, Pelican [2], a rack-scale design to support
the storage of cool and cold data on HDDs (contrast
with other cold storage rack-scale designs [15]). High-
end enterprise class dual-ported SAS-drives are avail-
able, which can be used to allow access to the drive from
multiple servers, to add failure resilience. However, this
effectivity requires two independent storage fabrics in
the rack. These two extremes motivated our interest in
the benefits of low-cost disaggregation more broadly.

8 Conclusion

We have described our early experiences trying to under-
stand rack-scale storage disaggregation. To achieve this,
we have built a custom research flexible storage fabric
that supports disaggregation. Our experiences with fail-
ure, dynamic elasticity, and configuration disaggregation
have convinced us to design a new storage fabric that
could be deployed in production storage racks.

Finally, although not in production, the switch has
been deployed in a development lab to support config-
uration disaggregation and failure testing. This enables a
single test rack to be used to instantiate multiple storage
topologies, thus allowing a single rack to mimic multiple
static racks. It also allows the repeatable testing of many
different failure modes.

Finally, if you would like design details of our research
switches, please contact us.



References

[1] Amazon s3. https://aws.amazon.com/s3/.

[2] BALAKRISHNAN, S., BLACK, R., DONNELLY,
A., ENGLAND, P., GLASS, A., HARPER, D.,
LEGTCHENKO, S., OGUS, A., PETERSON, E.,
AND ROWSTRON, A. Pelican: A Building Block
for Exascale Cold Data Storage. In OSDI (Oct.
2014).

[3] BLACK, R., DONNELLY, A., HARPER, D., OGUS,
A., AND ROWSTRON, A. Feeding the Pelican: Us-
ing Archival Hard Drives for Cold Storage Racks.
In 8th USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage 16) (Denver, CO,
2016), USENIX Association.

[4] BREWER, E., YING, L., GREENFIELD, L.,
CYPHER, R., AND T’SO, T. Disks for data cen-
ters. Tech. rep., Google, 2016.

[5] CALDER, B., WANG, J., OGUS, A., NILAKAN-
TAN, N., SKJOLSVOLD, A., MCKELVIE, S., XU,
Y., SRIVASTAV, S., WU, J., SIMITCI, H., ET AL.
Windows Azure Storage: a highly available cloud
storage service with strong consistency. In Pro-
ceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (2011), ACM,
pp. 143–157.

[6] GAO, P. X., NARAYAN, A., KARANDIKAR, S.,
CARREIRA, J., HAN, S., AGARWAL, R., RAT-
NASAMY, S., AND SHENKER, S. Network Re-
quirements for Resource Disaggregation. In 12th
USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16) (GA, 2016),
USENIX Association, pp. 249–264.

[7] HAN, S., EGI, N., PANDA, A., RATNASAMY, S.,
SHI, G., AND SHENKER, S. Network Support for
Resource Disaggregation in Next-generation Data-
centers. In Proceedings of the Twelfth ACM Work-
shop on Hot Topics in Networks (2013), ACM,
p. 10.

[8] HDFS architecture guide. https://hadoop.

apache.org/docs/r1.2.1/hdfs_design.

html.

[9] HUANG, C., SIMITCI, H., XU, Y., OGUS, A.,
CALDER, B., GOPALAN, P., LI, J., YEKHANIN,
S., ET AL. Erasure coding in windows azure stor-
age.

[10] Intel rack scale architecture. http:

//www.intel.com/content/www/us/

en/architecture-and-technology/

rsa-demo-x264.html.

[11] KLIMOVIC, A., KOZYRAKIS, C., THERESKA, E.,
JOHN, B., AND KUMAR, S. Flash Storage Disag-
gregation. In Proceedings of the Eleventh European
Conference on Computer Systems (New York, NY,
USA, 2016), EuroSys ’16, ACM, pp. 29:1–29:15.

[12] LI, C.-S., FRANKE, H., PARRIS, C., AND
CHANG, V. Disaggregated architecture for at scale
computing.

[13] LIM, K., TURNER, Y., CHANG, J., SANTOS,
J. R., AND RANGANATHAN, P. Disaggregated
Memory Benefits for Server Consolidation.

[14] LIM, K., TURNER, Y., SANTOS, J. R., AUY-
OUNG, A., CHANG, J., RANGANATHAN, P., AND
WENISCH, T. F. System-level implications of
disaggregated memory. In Proceedings of the
2012 IEEE 18th International Symposium on High-
Performance Computer Architecture (Washington,
DC, USA, 2012), HPCA ’12, IEEE Computer So-
ciety, pp. 1–12.

[15] MORGAN, T. P. Facebook loads up innovative
cold storage datacenter. http://tinyurl.com/

mtc95ve, October 2013.

[16] NOVAKOVIC, S., DAGLIS, A., BUGNION, E.,
FALSAFI, B., AND GROT, B. Scale-out NUMA.
In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (New York, NY,
USA, 2014), ASPLOS ’14, ACM, pp. 3–18.

[17] RAO, P. S., AND PORTER, G. Is Memory Dis-
aggregation Feasible?: A Case Study with Spark
SQL. In Proceedings of the 2016 Symposium on
Architectures for Networking and Communications
Systems (New York, NY, USA, 2016), ANCS ’16,
ACM, pp. 75–80.

[18] REINHARDT, S. K., AND WENISCH, T. F. Dis-
aggregated Memory for Expansion and Sharing in
Blade Servers. In In International Symposium on
Computer Architecture (ISCA, p. 2009.

https://aws.Alpha XR/s3/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-demo-x264.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-demo-x264.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-demo-x264.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-demo-x264.html
http://tinyurl.com/mtc95ve
http://tinyurl.com/mtc95ve

	Introduction
	The Flexible Fabric
	Base fabric performance

	Complete disaggregation
	Dynamic elastic disaggregation
	Failure disaggregation
	Configuration disaggregation
	Related work
	Conclusion

