
Video Captioning with Transferred Semantic Attributes∗

Yingwei Pan, Ting Yao, Houqiang Li, and Tao Mei
University of Science and Technology of China, Hefei, China Microsoft Research, Beijing, China

panyw.ustc@gmail.com, {tiyao, tmei}@microsoft.com, lihq@ustc.edu.cn

Abstract

Automatically generating natural language descriptions
of videos plays a fundamental challenge for computer vi-
sion community. Most recent progress in this problem has
been achieved through employing 2-D and/or 3-D Convo-
lutional Neural Networks (CNNs) to encode video content
and Recurrent Neural Networks (RNNs) to decode a sen-
tence. In this paper, we present Long Short-Term Memory
with Transferred Semantic Attributes (LSTM-TSA)—a novel
deep architecture that incorporates the transferred semantic
attributes learnt from images and videos into the CNN plus
RNN framework, by training them in an end-to-end man-
ner. The design of LSTM-TSA is highly inspired by the facts
that 1) semantic attributes play a significant contribution to
captioning, and 2) images and videos carry complementary
semantics and thus can reinforce each other for captioning.
To boost video captioning, we propose a novel transfer u-
nit to model the mutually correlated attributes learnt from
images and videos. Extensive experiments are conducted
on three public datasets, i.e., MSVD, M-VAD and MPII-
MD. Our proposed LSTM-TSA achieves to-date the best
published performance in sentence generation on MSVD:
52.8% and 74.0% in terms of BLEU@4 and CIDEr-D. Su-
perior results are also reported on M-VAD and MPII-MD
when compared to state-of-the-art methods.

1. Introduction
Video captioning, which is known as describing videos

with natural language, has brought a profound challenge to
both computer vision and language processing communi-
ties. Intensive research interests have been paid for this e-
merging topic.

Existing approaches to video captioning have evolved
through two dimensions: template-based language model
[8, 20, 33] and sequence learning method [15, 29, 34, 37].
The former predefines a set of templates for sentence gener-
ation following specific grammar rules and aligns each part
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Input Video:

Attributes from Images:

Attributes from Videos:

Video Caption:

young, girl, holding, child, little, floor, pair, it, woman, playing

person, doing, man, room, boy, cleaning, machine, his, someone, riding

a boy is cleaning the floor

Figure 1. An example of video description generation. The input
is a short video clip and the attributes are learnt from images and
videos, respectively. The output is a sentence generated by our
LSTM-TSA architecture.

of sentence with video content. This category of model,
however, highly depends on the pre-defined templates and
thus the generated sentences are always with a constant syn-
tactical structure. Sequence learning method, in contrast,
is to leverage sequence learning models to directly trans-
late the video content into a sentence, which is mainly in-
spired from the recent advances by using Recurrent Neural
Networks (RNNs) in machine translation [24]. The spir-
it behind is an encoder-decoder mechanism for translation.
More specifically, an encoder 2-D/3-D Convolutional Neu-
ral Network (CNN) reads a video and produces a vector of
video representations, which in turn is fed into a decoder
RNN that generate a natural sentence. While encouraging
performances are reported, the CNNs plus RNNs-based se-
quence learning approaches translate directly from video
representations to language, leaving the high-level seman-
tic cues in the video under explored. Moreover, high-level
semantic information, i.e., semantic attributes, has shown
effective in the vision to language tasks [31] (e.g., image
captioning and visual Q&A).

This paper proposes a novel deep architecture, named
Long Short-Term Memory with Transferred Semantic At-
tributes (LSTM-TSA), which takes advantages of incorpo-
rating semantic attributes into sequence learning for video
captioning. More importantly, take the given video in Fig-
ure 1 as an example, the semantic properties learnt from



images often depict static objects and scenes (e.g., “girl,”
“child” and “floor”) while the semantics extracted from
videos convey temporal dynamics (e.g., “doing,” “cleaning”
and “riding”). This has made the attributes mined from im-
ages and videos complementary to each other for the gen-
eration of sentence (e.g., “a boy is cleaning the floor”). We
investigate how the attributes from the two sources can be
leveraged for enhancing video captioning. Specifically, giv-
en a video, a 2-D/3-D CNN is utilized to extract visual fea-
tures of selected video frames/clips and the video represen-
tations are produced by mean pooling over these visual fea-
tures. Then, a LSTM network for generating video descrip-
tion is learnt by feeding into both video representations and
semantic attributes mined from images and videos. To bet-
ter leverage the attributes from two sources, a transfer unit
is devised to dynamically balance the influence in between
given the input word and the hidden state in the LSTM.

The main contribution of this work is the proposal of
LSTM-TSA for addressing the issue of exploiting the mutu-
al relationship between video representations and attributes
for boosting video captioning. This issue also leads to an
elegant view of how complementary attributes from images
and videos are jointly exploited for sentence generation,
which is a problem not yet fully explored in the literature.

2. Related Work
We briefly group the related works into two categories:

video captioning and sequence learning by using attributes.
The former draws upon research in automatically gener-
ating description to a video, and the later investigates se-
quence learning for visual content by utilizing the attributes.

Video Captioning. The research in this direction has
proceeded along two different dimensions: template-based
language methods [8, 11, 20, 33] and sequence learning
approaches (e.g., RNNs) [15, 22, 29, 30, 32, 34, 37].
Template-based language methods firstly align each sen-
tence fragments (e.g., subject, verb, object) with detect-
ed words from visual content and then generate the sen-
tence with predefined language template. Obviously, most
of them highly depend on the templates of sentence and al-
ways generate sentence with syntactical structure. [11] is
one of the earlier works that builds a concept hierarchy of
actions for natural language description of human activi-
ties. Rohrbach et al. learn a CRF to model the relation-
ships between different components of the input video and
generate description for video [20]. Recently, a deep join-
t video-language embedding model in [33] is designed for
video sentence generation. Different from template-based
language methods, sequence learning approaches learn the
probability distribution in the common space of visual con-
tent and textual sentence to generate novel sentences with
more flexible syntactical structure. In [30], Venugopalan et
al. present a LSTM based model to generate video descrip-

tions with the mean pooling representation over all frames.
The framework is then extended by inputting both frames
and optical flow images into an encoder-decoder LSTM in
[29]. Furthermore, Pan et al. additionally consider the rel-
evance between sentence semantics and video content as a
regularizer in LSTM based architecture [15]. Compared to
mean pooling, Yao et al. propose to utilize the temporal at-
tention mechanism to exploit temporal structure for video
captioning [34].

Sequence Learning by Using Attributes. Attributes
are properties observed in visual content with rich semantic
cues and have been widely studied in computer vision for
improving the efficacy of visual recognition [17]. Follow-
ing this elegant recipe, several recent works have attempted
to inject attributes into sequence learning for image cap-
tion generation. Fang at al. [6] leverage Multiple Instance
Learning to train attributes detector and then generate sen-
tence through a maximum-entropy language model based
on the outputs of attributes detector. Recently, in [31], high-
level concepts/attributes are shown to obtain clear improve-
ments on image captioning task when injected into existing
state-of-the-art RNN-based model and such visual attributes
are also utilized as semantic attention in [36] to enhance im-
age captioning. Most recently, Yao et al. [35] feed both
image and attributes into RNNs in different ways for en-
hancing image description generation.

Summary. Our work aims to leverage semantic at-
tributes in video captioning. Different from most of the
aforementioned sequence learning models using attributes
which mainly focus on sentence generation by solely de-
pending on the attributes learnt in domain, our work con-
tributes by studying not only learning attributes in videos
from both image and video domains, but also how the at-
tributes could be better fused by dynamically offering a
transfer unit in between for boosting video captioning.

3. Approach
We devise our CNN plus RNN architecture to gener-

ate video descriptions under the umbrella of incorporating
mined semantic attributes from images and videos. Specif-
ically, we begin this section by presenting the problem for-
mulation and how to learn semantic attributes in videos,
followed by our proposed LSTM-TSA video captioning
framework. In particular, several variants of our designed
transfer unit which is utilized to fuse the attributes learnt
from two sources are investigated and discussed.

3.1. Problem Formulation

Suppose we have a video V withNv sample frames/clips
(uniform sampling) to be described by a textual sentence S,
where S = {w1, w2, ..., wNs

} consisting of Ns words. Let
v ∈ RDv and wt ∈ RDw denote the Dv-dimensional video
representations of the video V and the Dw-dimensional



textual features of the t-th word in sentence S, respec-
tively. As a sentence consists of a sequence of word-
s, a sentence can be represented by a Dw × Ns matrix
W ≡ [w1,w2, ...,wNs

], with each word in the sentence
as its column vector. Furthermore, we have another two
feature vectors Ai ∈ RDai and Av ∈ RDav to represent
the probability distribution over the high-level attributes for
video V learnt from images and videos, respectively. More
details about how we mine and represent the attributes from
images and videos will be introduced in Section 3.2.

Inspired by the recent successes of probabilistic se-
quence models leveraged in statistical machine translation
[24] and semantic attributes utilized in image captioning
[6, 36], we aim to formulate our video captioning model in
an end-to-end fashion based on LSTM [9] which encodes
the given video and its learnt attributes from both images
and videos into a fixed dimensional vector and then decodes
it to the output target sentence. Hence, the video sentence
generation problem we exploit here can be formulated by
minimizing the following energy loss function as

E(v,Ai,Av,S) = − log Pr (S|v,Ai,Av), (1)

which is the negative log probability of the correct textual
sentence given the video and detected attributes from both
images and videos.

Since the model produces one word in the sentence at
each time step, it is natural to apply chain rule to model the
joint probability over the sequential words. Thus, the log
probability of the sentence is given by the sum of the log
probabilities over the word and can be expressed as

log Pr (S|v,Ai,Av) =

Ns∑
t=1

log Pr (wt|v,Ai,Av,w0, . . . ,wt−1).

(2)

By minimizing this loss, the contextual relationship among
the words in the sentence can be guaranteed given the video
and its learnt attributes from images and videos.

3.2. Semantic Attributes in Video

Attributes Learnt from images. We draw inspiration
from recent advances in attribute detection for image cap-
tioning [6, 36] and adopt the weakly-supervised approach
of Multiple Instance Learning (MIL) on image captioning
benchmarks (e.g., COCO [12]) to learn attribute detectors.
For an attribute wa, one image I is regarded as a positive
bag of regions (instances) if wa exists in image I’s ground-
truth sentences, and negative bag otherwise. By inputting
all the bags into a noisy-OR MIL model [38], the probabili-
ty of the bag bI which contains attribute wa is measured on
the probabilities of all the regions in the bag as

Prwa
I = 1−

∏
ri∈bI

(1− pwa
i ), (3)
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Figure 2. Video MIL framework.

where pwa
i is the probability of the attribute wa predicted

by region ri and can be calculated through a sigmoid lay-
er after the last convolutional layer in the CNN architecture
[6]. Here the adopted CNN architecture is a fully convolu-
tional network extended from recent popular CNN [23] that
shows superior performance for video representation learn-
ing [7, 14]. Specifically, the dimension of convolutional ac-
tivations from the last convolutional layer is x× x× h and
h represents the representation dimension of each region,
resulting in x× x response map which preserves the spatial
dependency of the image. Then, a cross entropy loss is cal-
culated based on the probabilities of all the attributes at the
top of the whole architecture to optimize image MIL mod-
el. With the learnt image MIL model on image captioning
dataset, we compute the probability distribution on all the
attributes for each sampled frame and perform mean pool-
ing over distributions of all the sampled frames to obtain the
final representations Ai of attributes learnt from images.

Attributes Learnt from videos. To detect attributes
from videos, one natural way is to directly train image MIL
model on video frames. However, as a video is a sequence
of frames with large variations, simply assigning video-
level description to each sampled frame will lead to the is-
sue of semantics shift and thus involve noise in the process
of attribute learning. To solve this problem, a video MIL
model is particularly devised to learn attributes from videos,
as shown in Figure 2.

Given an attribute wa, we treat the spatial regions of all
the NV sampled frames in video V as one bag, which is
considered as positive if wa exists in video V ’s descriptions
and negative otherwise. By feeding all the bags into the
fully convolutional network with the same architecture in
image MIL model, we calculate the probability of bag bV
which contains attribute wa on the probabilities of all the
regions in the bag as

Prwa
V = 1−

∏
j∈[1,NV ]

∏
rij∈b

(j)
V

(
1− pwa

ij

)
, (4)

where pwa
ij is the probability of the attributewa predicted by

the i-th region in the j-th frame and b(j)V denotes the set of
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Figure 3. The overview of our LSTM-TSA for video captioning
(better viewed in color). The video representation is produced by
mean pooling over the visual features of sampled frames/clips ex-
tracted by a 2-D/3-D CNN, which is injected into LSTM only at
the initial time. Image and video MIL models are used to mine se-
mantic attributes from images and videos respectively, which are
additionally incorporated into LSTM for boosting video caption-
ing. To better leverage the mined attributes from two sources, a
transfer unit is devised to dynamically fuse them into LSTM.

all the regions in the j-th frame. Specifically, in our train-
ing, all the NV sampled frames from one video are taken
as a batch and each frame is fed into the same fully convo-
lutional network followed by a sigmoid layer, resulting in
x × x response map whose element represents the proba-
bility pwa

ij of attribute wa detected in region rij . Similar to
image MIL model, a cross entropy loss layer is designed at
the top of the whole architecture to optimize our video MIL
model. As such, the proposed video MIL model is trained
holistically among all the frames in the video and the proba-
bility distribution calculated by Eq.(4) are employed as rep-
resentations Av of attributes learnt from videos.

3.3. Video Captioning with Semantic Attributes

With the detected high-level semantic attributes learn-
t from images and videos, we propose a Long Short-Term
Memory with Transferred Semantic Attributes from Images
and Videos (LSTM-TSAIV ) model for video captioning.
The basic idea of LSTM-TSAIV is to translate the video
representation from a 2-D and 3-D CNN to the desired out-
put sentence through LSTM-type RNN model by addition-
ally injecting the high-level semantic attributes learnt from
both images and videos. Specifically, a transfer unit is de-
signed to dynamically control the impacts of semantic at-
tributes from the two sources on sentence generation.

3.3.1 Attributes-based LSTM-type Video Captioning

Inspired by the best-performing architecture (factored, two-
layer LSTM) in LRCN [5], we devise our attributes-based
LSTM-type video captioning model by injecting both video

representation and its detected semantic attributes learnt
from images and videos into LSTM, as illustrated in Figure
3. In particular, our LSTM-TSAIV model firstly encodes
video representation v at the initial step and then feeds at-
tributes representations from images and videos as the ad-
ditional inputs to the second-layer LSTM unit at each time
step to emphasize the semantic information more frequent-
ly. The LSTM updating procedure in LSTM-TSAIV is as

x−1 = f1 (Tvv) + g (Ai,Av) , (5)

xt = f1 (Tswt) + g (Ai,Av) , t ∈ {0, . . . , Ns − 1} , (6)

ht = f2
(
xt) , t ∈ {0, . . . , Ns − 1} , (7)

where De is the dimension of LSTM input, Tv ∈ RDe×Dv

and Ts ∈ RDe×Dw are the transformation matrices for
video representation and textual features of word, xt and
ht are the inputs and cell output of the second-layer L-
STM unit, f1 and f2 are the updating functions within the
first/second-layer LSTM units, and g is the transformation
function to transfer both Ai and Av into the second-layer
LSTM unit.

3.3.2 Transfer Unit

To contextually transfer the information of semantic at-
tributes from multiple sources into LSTM, we devise a nov-
el transfer unit, which is treated as the core unit in our pro-
posed LSTM-TSAIV model.

Transfer Gate. A novel gate architecture, named as trans-
fer gate, is especially designed to control the impact of se-
mantic attributes by taking contextual information into ac-
count, which is the left part of transfer unit as shown in
Figure 4. At the t-th time step, the transfer gate encap-
sulates both the static information (attributes learnt from
images and videos) and dynamic (contextual) information
(current input word and previous LSTM hidden state) to s-
elect valuable knowledge from attributes, which is applied
with feature transformation, to produce a fix-length weight
vector and followed by a sigmoid function to squash the
real-valued weight vector to a range of [0, 1]. Such output
weight vector gt for transfer gate is computed as

gt = σ(Gswt +Ghh
t−1 +GiAi +GvAv), (8)

where Dh is the dimension of LSTM cell output, Gs ∈
RDe×Dw , Gh ∈ RDe×Dh , Gi ∈ RDe×Dai and Gv ∈
RDe×Dav are the transformation matrices for textual fea-
tures of word, cell output of LSTM, representation of at-
tributes learnt from images and videos, respectively, and
sigmoid σ is element-wise non-linear activation function.
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Figure 4. Three different architectures of transfer unit with transfer
gate (left side) in our LSTM-TSAIV framework.

LSTM with Transfer Unit. Then, we formulate our
video captioning with semantic attributes learnt from two
sources as a multi-source sequence learning problem and
modify the architectures of transfer unit which is treated as
the additional input to LSTM for our purpose. The core is-
sue for the modification is about whether the transfer gate
in our transfer unit should individually or simultaneously
impact the semantic attributes learnt from different sources.
Individual impact means that the transfer gate only critical-
ly control the information transferred from attributes in one
specific source, while directly leverages the attributes from
other source unconditionally. Simultaneous impact decou-
ples the influence of transfer gate such that attributes learnt
from different sources can be simultaneously guided with
transfer gate.

Our preliminary design LSTM-TSAIV0
is the deep fu-

sion without transfer gate by directly utilizing the multi-
modal layer. Specifically, the additional input to LSTM is
calculated as

LSTM-TSAIV0
: g (Ai,Av) = TAi

Ai + TAvAv, (9)

where TAi
∈ RDe×Dai and TAv ∈ RDe×Dav are

the transformation matrices for representation of attributes
learnt from images and videos, respectively. Please also
note that if only semantic attributes learnt from one single
source (images/videos) are available, the additional input
g (Ai,Av) to LSTM in LSTM-TSA will be degraded into
g (Ai) = TAi

Ai or g (Av) = TAvAv and we name these
two variants as LSTM-TSAI and LSTM-TSAV .

Then based on the above core design issue, we derive
three different architectures of transfer unit as depicted in
Figure 4, respectively named as LSTM-TSAIV1

to LSTM-
TSAIV3

. The first design (LSTM-TSAIV1
) individually as-

signs the attributes learnt from images with the weight vec-
tor of transfer gate to dynamically select the favorable in-
formation which will be fused as the additional input to L-
STM. The second design (LSTM-TSAIV2

) is similar except
that the calculated weight vector of transfer gate is only al-
located to the attributes learnt from videos. Both designs are
relatively straightforward to implement by multiplying the
transformed representation of attributes from one specific
source with the weight vector of transfer gate through dot
product. The last design (LSTM-TSAIV3

) is a compromise
version between the former two architectures, by simulta-
neously controlling the two attributes learnt from different
sources with decoupled weight vectors from transfer gate,
which is also treated as a linear combination between the
attributes learnt from images and videos.

Specifically, given the output weight vector gt of transfer
gate in the time step t, the three variants of our transfer unit
are designed as

LSTM-TSAIV1
: g (Ai,Av) = TAi

Ai � g
t
+ TAvAv, (10)

LSTM-TSAIV2
: g (Ai,Av) = TAi

Ai + TAvAv � g
t
, (11)

LSTM-TSAIV3
: g (Ai,Av) = TAi

Ai � (1− g
t
) +TAvAv � g

t
, (12)

where � denotes the element-wise dot product function.

4. Experiments
We evaluate and compare our proposed LSTM-TSA with

state-of-the-art approaches by conducting video captioning
task on three video captioning benchmarks, i.e., Microsoft
Research Video Description Corpus (MSVD) [3], Montreal
Video Annotation Dataset (M-VAD) [26] and MPII Movie
Description Corpus (MPII-MD) [19]. The first is the most
popular video captioning benchmark of YouTube videos
and the other two are both recently released large-scale
movie description datasets.

4.1. Datasets and Settings

MSVD. MSVD contains 1,970 video snippets collect-
ed from YouTube. There are roughly 40 available English
descriptions per video. In our experiments, we follow the
setting used in prior works [8, 15], taking 1,200 videos for
training, 100 for validation and 670 for testing.

M-VAD. M-VAD is a recent collection of large-scale
movie description dataset. It is composed of about 49,000
DVD movie snippets, which are extracted from 92 DVD
movies. Each movie clip is accompanied with single sen-
tence from semi-automatically transcribed descriptive video
service (DVS) narrations.

MPII-MD. MPII-MD is another recent collection of
movie description dataset, similar to M-VAD. It contains
around 68,000 movie snippets from 94 Hollywood movies
and each snippet is equipped with a single sentence from
movie scripts and DVS.



Settings. We uniform sample 25 frames/clips for each
video and each word in the sentence is represented as “one-
hot” vector (binary index vector in a vocabulary). For
video representations, we take the output of 4096-way fc6
layer from the 19-layer VGG [23] pre-trained on Ima-
genet ILSVRC12 dataset [21] and 4096-way fc6 layer from
C3D [27] pre-trained on Sports-1M video dataset [10] as
frame/clip representation respectively, and concatenate the
features from VGG and C3D as the input video represen-
tation. For representation of attributes learnt from images,
we select the 1,000 most common words on COCO [12] as
the high-level semantic attributes in the image domain and
train the attribute detectors with image MIL model [6] pure-
ly on the COCO training data, resulting in the final 1,000-
way vector of probabilities. For the representation of at-
tributes learnt from videos, 1,000 most common words on
each video captioning benchmark are selected individually
as semantic attributes in each specific video domain and the
corresponding attribute detectors are trained with proposed
video MIL model. The dimension of the input and hidden
layers in LSTM are both set to 1,024. In testing stage, we
adopt the beam search strategy and set the beam size to 4.

For quantitative evaluation of our proposed models, we
adopt three common metrics in image/video captioning
tasks: BLEU@N [16], METEOR [2], and CIDEr-D [28].
All the metrics are computed by using the codes1 released
by Microsoft COCO Evaluation Server [4].

4.2. Compared Approaches

To empirically verify the merit of our LSTM-TSA mod-
els, we compared the following state-of-the-art methods.

(1) LSTM [30]: LSTM attempts to directly translate
from video pixels to natural language with a CNN plus RN-
N framework. The video representation is generated by per-
forming mean pooling over the frame features across the
entire video.

(2) Sequence to Sequence–Video to Text (S2VT) [29]:
S2VT incorporates both RGB and optical flow inputs, and
the encoding and decoding of the inputs and word represen-
tations are learnt jointly in a parallel manner.

(3) Temporal Attention (TA) [34]: TA combines the
frame representation from GoogleNet [25] and video clip
representation based on a 3-D CNN trained on hand-crafted
descriptors. Furthermore, a weighted attention mechanism
is exploited to dynamically attend to specific temporal re-
gions of the video while generating sentence.

(4) Long Shot-Term Memory with visual-semantic Em-
bedding (LSTM-E) [15]: LSTM-E utilizes both 2-D CNN
and 3-D CNN to learn video representation, and simultane-
ously explores the learning of LSTM and visual-semantic
embedding for video captioning.

1https://github.com/tylin/coco-caption

(5) Convolutional Gated-Recurrent-Unit Recurrent Net-
works (GRU-RCN) [1]: GRU-RCN leverages convolution-
al GRU-RNN to extract visual representation and gener-
ate sentence based on the LSTM text-generator with soft-
attention mechanism [34].

(6) hierarchical Recurrent Neural Networks (h-RNN)
[37]: Proposed most recently, h-RNN exploits both spatial
and temporal attention mechanisms for video captioning.

(7) Hierarchical Recurrent Neural Encoder (HRNE)
[13]: HRNE encodes the frame sequence with hierarchical
RNN and decodes the sentence with attention mechanism.

(8) Long Short-Term with Transferred Semantic At-
tributes (LSTM-TSA): We design three runs for our pro-
posed framework, i.e., LSTM-TSAI , LSTM-TSAV , and
LSTM-TSAIV . The input semantic attributes of the first
two runs LSTM-TSAI and LSTM-TSAV are purely mined
from images and videos, respectively. The last run LSTM-
TSAIV is to fuse semantic attributes from both images and
videos. Note that LSTM-TSAIV3 is particularly exploit-
ed as LSTM-TSAIV here. The comparisons between four
variants of LSTM-TSAIV w or w/o transfer gate will be
discussed in Section 4.4.

4.3. Performance Comparison

Quantitative Analysis. Table 1 shows the perfor-
mances of different models on MSVD dataset. Over-
all, the results across six evaluation metrics consistent-
ly indicate that our proposed LSTM-TSAIV achieves bet-
ter performance than all the state-of-the-art techniques in-
cluding non-attention models (LSTM, S2VT, LSTM-E)
and attention-based approaches (TA, GRU-RCN, h-RNN,
HRNE). In particular, the CIDEr-D of our LSTM-TSAIV

can achieve 74.0% which is to-date the highest perfor-
mance reported on MSVD dataset, making the relative im-
provement over TA, GRU-RCN, h-RNN by 43.1%, 8.8%,
and 12.5%, respectively. By additionally incorporating at-
tributes to LSTM model, LSTM-TSAI and LSTM-TSAV

lead to a performance boost, indicating that visual represen-
tations are augmented with high-level semantic attributes
and thus do benefit the learning of video sentence gen-
eration. As expected, LSTM-TSAV whose attributes are
trained in domain outperforms LSTM-TSAI which predicts
the attributes learnt on image domain. LSTM-TSAIV uti-
lizing attributes learnt from images and videos significantly
improves LSTM-TSAV . The result indicates the advantage
of leveraging the learnt attributes jointly from two domains
which are complementary for boosting video captioning.

The performance comparisons in terms of METEOR on
two movie datasets M-VAD and MPII-MD are summarized
in Table 2. The METEOR scores on the two datasets are
much lower than those on MSVD, due to the high diversity
of visual and textual content in movies. Our LSTM-TSAIV

consistently outperforms other baselines in two datasets.

https://github.com/tylin/coco-caption


Table 1. METEOR, CIDEr-D, and BLEU@N scores of our LSTM-TSA and other state-of-the-art methods on MSVD dataset. All values
are reported as percentage (%).

Model METEOR CIDEr-D BLEU@1 BLEU@2 BLEU@3 BLEU@4
LSTM [30] 29.1 - - - - 33.3
S2VT [29] 29.8 - - - - -
TA [34] 29.6 51.7 80.0 64.7 52.6 41.9
LSTM-E [15] 31.0 - 78.8 66.0 55.4 45.3
GRU-RCN [1] 31.6 68.0 - - - 43.3
h-RNN [37] 32.6 65.8 81.5 70.4 60.4 49.9
HRNE [13] 33.1 - 79.2 66.3 55.1 43.8
LSTM-TSAI 32.4 71.5 81.0 69.6 60.2 50.2
LSTM-TSAV 32.6 71.7 82.1 70.7 61.1 50.5
LSTM-TSAIV 33.5 74.0 82.8 72.0 62.8 52.8

Table 2. METEOR (M) scores (%) of our LSTM-TSA and other
state-of-the-art methods on (a) M-VAD and (b) MPII-MD datasets.

(a) M-VAD dataset.

Model M
TA [34] 4.3
LSTM [30] 6.1
Visual-Labels [18] 6.4
S2VT [29] 6.7
LSTM-E [15] 6.7
HRNE [13] 6.8
LSTM-TSAI 6.4
LSTM-TSAV 6.9
LSTM-TSAIV 7.2

(b) MPII-MD dataset.

Model M
SMT [19] 5.6
LSTM [30] 6.7
Visual-Labels [18] 7.0
S2VT [29] 7.1
LSTM-E [15] 7.3
LSTM-TSAI 7.4
LSTM-TSAV 7.6
LSTM-TSAIV 8.0

The METEOR of LSTM-TSAIV can reach 7.2% and 8.0%,
which makes the relative improvement over the best com-
petitor HRNE in M-VAD and LSTM-E in MPII-MD by
5.9% and 9.6%, respectively. Similar to the observation-
s on MSVD, LSTM-TSAI and LSTM-TSAV exhibit bet-
ter performance than LSTM by further taking attributes in-
to account for video captioning. In addition, LSTM-TSAV

performs better than LSTM-TSAI and larger degree of im-
provement is attained when exploiting attributes from both
images and videos by LSTM-TSAIV .

Qualitative Analysis. Figure 5 shows a few video ex-
amples with the detected semantic attributes from images
and videos respectively, human-annotated ground truth sen-
tences and sentences generated by two approaches, i.e., L-
STM and our LSTM-TSAIV . From these exemplar results,
it is easy to see that the two automatic methods can generate
somewhat relevant and logically correct sentences, while
our model LSTM-TSAIV can predict more accurate word-
s by jointly exploiting video representations and seman-
tic attributes learnt from images and videos for enhancing
video captioning. For instance, compared to subject term
“a man” and verb term “cutting” in the sentence generat-
ed by LSTM for the first video, “a woman” and “lying” in
our LSTM-TSAIV are more relevant to the video content,

since the word “woman” and “lying” predicted as one at-
tribute from images and videos respectively are directly fed
into LSTM to guide the sentence generation. Similarly, ver-
b term “cleaning” detected as an attribute from videos and
object term “floor” learnt from images present the third im-
age more exactly. Moreover, our LSTM-TSAIV can gen-
erate more descriptive sentence by enriching the semantics
with attributes. For instance, with the detected term “for-
est,” the generated sentence “a bear is walking in the forest”
of the fifth video depicts the video content more compre-
hensive. This confirms that video captioning is benefited
by leveraging complementary attributes learnt from images
and videos.

4.4. Experimental Analysis

We further verify the effectiveness of our proposed video
MIL framework for attribute learning and compare the dif-
ferent variants of our designed transfer unit.

Evaluation of Video MIL Framework. There are gen-
erally two directions for attribute learning on videos. One is
to perform image MIL model on individual video frame and
the other is our proposed video MIL model to jointly utilize
all the sampled frames from one video, as shown in Figure
2. Table 3 compares the sentence generation performances
of the LSTM-TSAV model with semantic attributes only
learnt from videos by these two different MIL models on
MSVD dataset. The results across different metrics consis-
tently indicate that LSTM-TSAV with semantic attributes
learnt by video MIL model leads to a better performance,
demonstrating the advantage of exploring semantic infor-
mation among all the sampled frames from one video holis-
tically, as opposed to locally based on individual frame.

Evaluation of Transfer Unit. Next, we turn to evalu-
ate different variants of our designed transfer unit towards
sentence generation. The performances on MSVD dataset
of our LSTM-TSAIV are shown in Table 4, by combin-
ing attributes learnt from images and videos with different
variants of transfer unit. LSTM-TSAIV0

directly calculates



GT: a little girl is laying in bed
LSTM: a man is cutting a piece of paper
LSTM-TSAIV: a woman is lying on a bed

Attributes from images:
bed: 0.854 laying: 0.579 man: 0.550 
person: 0.290 sleeping: 0.262
white: 0.222 lying: 0.216 young: 0.177 
woman: 0.168 two: 0.164

Attributes from videos:
lying: 0.578 person: 0.519
young: 0.369 girl: 0.323 three: 0.296 
little: 0.276 boy: 0.254 man: 0.216 
trying: 0.215 doing: 0.198

...

... GT: a plane is running on a run way
LSTM: a car is landing
LSTM-TSAIV: a plane is flying

Attributes from images:
plane: 0.562 airplane: 0.445
air: 0.271 airport: 0.268 jet: 0.262
runway: 0.230 white: 0.222
sitting: 0.199 it: 0.177 large: 0.134

... GT: a baby is cleaning
LSTM: a boy is playing with a toy
LSTM-TSAIV: a boy is cleaning the floor

Attributes from videos:
flying: 0.998 man: 0.998 flight: 0.941
air: 0.885 sky: 0.845 person: 0.753
takes: 0.657 someone: 0.583 jet: 0.568 
something: 0.525

Attributes from videos:
person: 0.962 doing: 0.732 man: 0.675
room: 0.633 boy: 0.564 cleaning: 0.398
machine: 0.382  his: 0.368
someone: 0.333 riding: 0.258

Attributes from images:
young: 0.420 girl: 0.319 holding: 0.308 
child: 0.210 little: 0.200 floor: 0.186
pair: 0.185 it: 0.176
woman: 0.168 playing: 0.166

...

... GT: bear eats dirt
LSTM: a badger is walking
LSTM-TSAIV: a bear is walking in the forest

Attributes from videos:
animals: 0.806 ground: 0.756 
something: 0.743 black: 0.636 man: 0.611 
animal: 0.603 baby: 0.506 forest: 0.453 
searching: 0.434 walking: 0.416

Attributes from images:
bear: 0.521 forest: 0.460 walking: 0.369
woods: 0.362 some: 0.335 area: 0.242
standing: 0.220 two: 0.212 grass: 0.188
rocks: 0.186

GT: a man and woman is riding a motorcycle
LSTM: a woman is riding a horse
LSTM-TSAIV: a man and woman are riding a 
motorcycle

Attributes from videos:
riding: 0.710 man: 0.707 two: 0.503
each: 0.455 other: 0.453 together: 0.445
going: 0.404 bike: 0.401 talk: 0.400
motor: 0.399

Attributes from images:
man: 0.543 woman: 0.409 sitting: 0.391
two: 0.342 wearing: 0.341 riding: 0.311
smiling: 0.281 young: 0.233
people: 0.210 motorcycle: 0.202 

Figure 5. Attributes and sentences generation results on MSVD dataset. The attributes from videos and images are predicted by our video
MIL model and image MIL model in [6], respectively, and the output sentences are generated by 1) Ground Truth (GT): One selected
ground truth sentence, 2) LSTM, and 3) our LSTM-TSAIV .

Table 3. METEOR, CIDEr-D, and BLEU@4 scores of our pro-
posed model LSTM-TSAV with semantic attributes only learnt
from videos by two different MIL models on MSVD dataset. One
is to perform image MIL model on individual video frame and the
other is our proposed video MIL model as shown in Figure 2. All
values are reported as percentage (%).

Model METEOR CIDEr-D BLEU@4
Image MIL model 32.0 70.6 48.8
Video MIL model 32.6 71.7 50.5

an element-wise sum of the feature mappings of attributes
from images and videos as a combination, which is fed in-
to LSTM as an additional input. Thus, this additional input
is shared and fixed at each time step in LSTM. In contrast,
LSTM-TSAIV1 , LSTM-TSAIV2 and LSTM-TSAIV3 fuses
the two attributes with a transfer gate that dynamically com-
putes a distinct weight based on the two attributes, the cur-
rent input word and the previous hidden state in LSTM, and
then computes the additional inputs to LSTM by applying
the weight to attributes from images, videos and both, re-
spectively. As such, the weight offers a more precise control
of impacts from semantic attributes by integrating context
information and is different at each time step. As indicat-
ed by our results, utilizing transfer gate which dynamically
balances the influence between attributes learnt from im-
ages and videos can constantly lead to better performance
than LSTM-TSAIV0 . A larger performance gain is attained
when applying the weight on attributes from both.

5. Discussions and Conclusions
We have presented Long Short-Term Memory with

Transferred Semantic Attributes (LSTM-TSA) architecture

Table 4. METEOR, CIDEr-D, and BLEU@4 scores of our pro-
posed model LSTM-TSAIV with semantic attributes learnt from
both images and videos on MSVD dataset. Results are shown uti-
lizing the different input architectures of LSTM w/o transfer gate.

Model METEOR CIDEr-D BLEU@4
LSTM-TSAIV0 32.7 71.7 50.3
LSTM-TSAIV1 32.9 71.5 51.2
LSTM-TSAIV2 33.0 72.3 50.5
LSTM-TSAIV3 33.5 74.0 52.8

which explores both video representations and semantic at-
tributes for video captioning. Particularly, we study the
problems of how to mine attributes from images and videos
and how to fuse them in an elegant manner for enhancing
sentence generation. To verify our claim, we have presented
video MIL framework to holistically explore semantic in-
formation in a video and a transfer unit to contextually con-
trol the impacts of attributes learnt from images and videos.
Experiments conducted on three widely adopted video cap-
tioning datasets validate our proposal and analysis. Perfor-
mance improvements are clearly observed when comparing
to other captioning techniques.

Our future works are as follows. First, attention mech-
anism will further be incorporated into our LSTM-TSA ar-
chitecture for further boosting video captioning. Second,
we will investigate how to leverage semantic attributes for
multiple sentence or paragraph generation for videos.

Acknowledgments
This work was supported in part by the 973 Programme

under contract No. 2015CB351803, NSFC under contract
No. 61325009 and No. 61390514.



References
[1] N. Ballas, L. Yao, C. Pal, and A. Courville. Delving deeper

into convolutional networks for learning video representa-
tions. In ICLR, 2016.

[2] S. Banerjee and A. Lavie. Meteor: An automatic metric for
mt evaluation with improved correlation with human judg-
ments. In ACL workshop, 2005.

[3] D. L. Chen and W. B. Dolan. Collecting highly parallel data
for paraphrase evaluation. In ACL, 2011.

[4] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dol-
lár, and C. L. Zitnick. Microsoft COCO captions: Da-
ta collection and evaluation server. arXiv preprint arX-
iv:1504.00325, 2015.

[5] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell. Long-term recur-
rent convolutional networks for visual recognition and de-
scription. In CVPR, 2015.

[6] H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, et al.
From captions to visual concepts and back. In CVPR, 2015.

[7] C. Gan, T. Yao, K. Yang, Y. Yang, and T. Mei. You lead,
we exceed: Labor-free video concept learning by jointly ex-
ploiting web videos and images. In CVPR, 2016.

[8] S. Guadarrama, N. Krishnamoorthy, G. Malkarnenkar,
S. Venugopalan, R. Mooney, T. Darrell, and K. Saenko. Y-
outube2text: Recognizing and describing arbitrary activities
using semantic hierarchies and zero-shot recognition. In IC-
CV, 2013.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 1997.

[10] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In CVPR, 2014.

[11] A. Kojima, T. Tamura, and K. Fukunaga. Natural language
description of human activities from video images based on
concept hierarchy of actions. IJCV, 2002.

[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In ECCV, 2014.

[13] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang. Hierarchical
recurrent neural encoder for video representation with ap-
plication to captioning. arXiv preprint arXiv:1511.03476,
2015.

[14] Y. Pan, Y. Li, T. Yao, T. Mei, H. Li, and Y. Rui. Learning
deep intrinsic video representation by exploring temporal co-
herence and graph structure. In IJCAI, 2016.

[15] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui. Jointly modeling
embedding and translation to bridge video and language. In
CVPR, 2016.

[16] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a
method for automatic evaluation of machine translation. In
ACL, 2002.

[17] D. Parikh and K. Grauman. Relative attributes. In ICCV,
2011.

[18] A. Rohrbach, M. Rohrbach, and B. Schiele. The long-short
story of movie description. In GCPR, 2015.

[19] A. Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele. A
dataset for movie description. In CVPR, 2015.

[20] M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and
B. Schiele. Translating video content to natural language
descriptions. In ICCV, 2013.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 2015.

[22] R. Shetty and J. Laaksonen. Video captioning with recurrent
networks based on frame-and video-level features and visual
content classification. In ICCV workshop, 2015.

[23] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[24] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In NIPS, 2014.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

[26] A. Torabi, C. Pal, H. Larochelle, and A. Courville. Using
descriptive video services to create a large data source for
video annotation research. arXiv preprint arXiv:1503.01070,
2015.

[27] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. In ICCV, 2015.

[28] R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider:
Consensus-based image description evaluation. In CVPR,
2015.

[29] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney,
T. Darrell, and K. Saenko. Sequence to sequence - video
to text. In ICCV, 2015.

[30] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,
R. Mooney, and K. Saenko. Translating videos to natural
language using deep recurrent neural networks. In NAACL
HLT, 2015.

[31] Q. Wu, C. Shen, L. Liu, A. Dick, and A. v. d. Hengel. What
value do explicit high level concepts have in vision to lan-
guage problems? In CVPR, 2016.

[32] J. Xu, T. Mei, T. Yao, and Y. Rui. MSR-VTT: A large
video description dataset for bridging video and language.
In CVPR, 2016.

[33] R. Xu, C. Xiong, W. Chen, and J. J. Corso. Jointly model-
ing deep video and compositional text to bridge vision and
language in a unified framework. In AAAI, 2015.

[34] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,
and A. Courville. Describing videos by exploiting temporal
structure. In ICCV, 2015.

[35] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei. Boosting image
captioning with attributes. arXiv preprint arXiv:1611.01646,
2016.

[36] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. Image cap-
tioning with semantic attention. In CVPR, 2016.

[37] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu. Video
paragraph captioning using hierarchical recurrent neural net-
works. In CVPR, 2016.

[38] C. Zhang, J. C. Platt, and P. A. Viola. Multiple instance
boosting for object detection. In NIPS, 2005.




