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In the classical secretary problem, one a�empts to �nd the maximum of an unknown and unlearnable

distribution through sequential search. In many real-world searches, however, distributions are not entirely

unknown and can be learned through experience. To investigate learning in such a repeated secretary problem

we conduct a large-scale behavioral experiment in which people search repeatedly from �xed distributions. In

contrast to prior investigations that �nd no evidence for learning in the classical scenario, in the repeated

se�ing we observe substantial learning resulting in near-optimal stopping behavior. We conduct a Bayesian

comparison of multiple behavioral models which shows that participants’ behavior is best described by a class

of threshold-based models that contains the theoretically optimal strategy. In fact, ��ing such a threshold-

based model to data reveals players’ estimated thresholds to be surprisingly close to the optimal thresholds

a�er only a small number of games.

1 INTRODUCTION
�is paper concerns a popular optimal stopping problem and whether people improve at it with

experience. Consider the following scenario:

You have been captured by an evil dictator. He forces you to play a game. �ere

are 15 boxes. Each box has a di�erent amount of money in it. You can open any

number of boxes in any order. A�er opening each box, you can decide to open

another box or stop. If you stop right a�er opening the box with the most money

in it (of the 15 boxes), then you win. However, if you stop at any other time, you

lose and the evil dictator will kill you.

Readers may recognize this as a variant of the “secretary problem”, a compact question with an

optimal stopping rule as its answer. As mathematical puzzles go, the secretary problem is a great

success. Since its early published appearances in the mid-twentieth century, the problem has been

modi�ed and analyzed in hundreds of academic articles. Freeman [1983] provides an early review

that itself has garnered several hundred citations. Even 25 years ago a review article noted that the

secretary problem, “constitutes its own ‘�eld’ of study within mathematics-probability-optimization”

[Ferguson, 1989].

�e intense academic interest in the secretary problem may have to do with its similarity to

real-life search problems such as choosing a mate [Todd, 1997], choosing an apartment [Zwick et al.,

2003] or hiring, for example, a secretary. It may have to do with the way the problem exempli�es

the concerns of core branches of economics and operations research that deal with search costs.

Lastly, the secretary problem may have endured because of curiosity about its fascinating solution.

In the classic version of the problem, the optimal strategy is to ascertain the maximum of the �rst

1/e boxes and then stop a�er the next box that exceeds it. Interestingly, this 1/e stopping rule wins

about 1/e of the time in the limit [Gilbert and Mosteller, 1966]. �e curious solution to the secretary

problem only holds when the values in the boxes are drawn from an unknown distribution. To

make this point clear, in some empirical studies of the problem, participants only get to learn the

.
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rankings of the boxes instead of the values (e.g., [Seale and Rapoport, 1997]). But is it realistic to

assume that people cannot learn about the distributions in which they are searching?

In many real-world searches, people can learn about the distribution of the quality of candidates

as they search. �e �rst time a manager hires someone, she may have only a vague guess as to the

quality of the candidates that will come through the door. By the ��ieth hire, however, she’ll have

hundreds of interviews behind her and know the distribution rather well. �is should cause her

accuracy in a real-life secretary problem to increase with experience.

While people seemingly should be able improve at the secretary problem with experience,

surprisingly, prior academic research does not �nd evidence that they do. For example, Campbell

and Lee [2006] a�empted to get participants to learn by o�ering enriched feedback and even

�nancial rewards in a repeated secretary problem, but concluded “there is no evidence people learn

to perform be�er in any condition”. Similarly, Lee [2006] found no evidence of learning, nor did

Seale and Rapoport [1997].

In contrast, by way of a randomized experiment with thousands of players, we �nd that per-

formance improves dramatically over a few trials and soon approaches optimal levels. We will

show that players steadily increase their probability of winning the game with more experience,

eventually ge�ing to within 5 percentage points of the optimal win rate. �en we show that the

improved win rates are due to players learning to make be�er decisions on a box-by-box basis and

not just due to aggregating over boxes. Furthermore we will show that the learning we observe

occurs in a noisy environment where the feedback they get, i.e. win or lose, may be unhelpful.

A�er showing various types of learning in our data we turn our a�ention to modeling the players

behavior. Using a Bayesian comparison framework we show that players’ behavior is best described

by a family of threshold-based models which include the optimal strategy. Moreover, the estimated

thresholds are surprisingly close to the optimal thresholds a�er only a small number of games.

2 RELATEDWORK
While the total number of articles on the secretary problem is large [Freeman, 1983], our concern

with empirical, as opposed to purely theoretical, investigations reduces these to a much smaller set.

We discuss here the most similar to our investigation. Ferguson [1989] usefully de�nes a “standard”

version of the secretary problem as follows:

1. �ere is one secretarial position available.

2. �e number n of applicants is known.

3. �e applicants are interviewed sequentially in random order, each order being

equally likely.

4. It is assumed that you can rank all the applicants from best to worst without ties.

�e decision to accept or reject an applicant must be based only on the relative

ranks of those applicants interviewed so far.

5. An applicant once rejected cannot later be recalled.

6. You are very particular and will be satis�ed with nothing but the very best.

�e one point on which we deviated from the standard problem is the fourth. To follow this

fourth assumption strictly, instead of presenting people with raw quality values, some authors (e.g.,

Seale and Rapoport [1997]) present only the ranks of the candidates, updating the ranks each time

a new candidate is inspected. �is prevents people from learning about the distribution. However,

because the purpose of this work is to test for improvement when distributions are learnable, we

presented participants with actual values instead of ranks.
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Others properties of the classical secretary problem could have been changed. For example, there

exist alternate versions in which there is a payout for choosing candidates other than the best.

�ese “cardinal” and “rank-dependent” payo� variants [Bearden, 2006] violate the sixth property

above. We performed a literature search and found fewer than 100 papers on these variants, while

�nding over 2,000 papers on the standard variant. Our design preserves the sixth property for two

reasons. First, by preserving it, our results will be directly comparable to the the greatest number

of existing theoretical and empirical analyses. Second, changing more than one variable at a time

is undesirable because it makes it di�cult to identify which variable change is responsible for

changes in outcomes.

While prior investigations, listed next, have looked at people’s performance on the secretary

problem, none have exactly isolated the condition of making the distributions learnable. Across

several articles, Lee and colleagues [Campbell and Lee, 2006, Lee, 2006, Lee et al., 2004] conducted

experiments in which participants were shown values one at a time and were told to try to stop

at the maximum. Across these papers, the number of candidates (or boxes or secretaries) ranged

from 5 to 50 and participants played from 40 to 120 times each. In all these studies, participants

knew that the values were drawn from a uniform distribution between 0 and 100. For instance,

Lee [2006] states, “It was emphasized that … the values were uniformly and randomly distributed

between 0.00 and 100.00”. With such an instruction, players can immediately and exactly infer

the percentiles of the values presented to them, which helps them calculate the probability that

unexplored values may exceed what they have seen. As participants were told about the distribution,

these experiments do not involve learning distribution from experience, which is our concern.

Information about the distribution was also conveyed to participants in a study by Rapoport and

Tversky [1970], in which seven individual participants viewed an impressive 15,600 draws from

probability distributions over several weeks before playing secretary problem games with values

drawn from the same distributions. �ese investigations are similar to ours in that they both involve

repeated play and that they present players with actual values instead of ranks. �at is, they depart

from the fourth feature of the standard secretary problem listed above. �ese studies, however,

di�er from ours in that they give participants information about the distribution from which the

values are drawn before they begin to play. In contrast, in our version of the game, participants are

told no information about the distribution, see no samples from it before playing, and do not know

what the minimum or maximum values could be. �is key di�erence between the se�ings may

have had a great impact. For instance, in the studies by Lee and colleagues, the authors did not �nd

evidence of learning or players becoming be�er with experience. In contrast, we �nd profound

learning and improvement with repeated play.

Corbin et al. [1975] ran an experiment in which people played repeated secretary problems, with

a key di�erence that these authors manipulated the values presented to subjects with each trial.

For instance, the authors varied the support of the distribution from which values were drawn,

and manipulated the ratio and ranking of early values relative to later ones. �e manipulations

were done in an a�empt to prevent participants from learning about the distribution and thus

make each trial like the “standard” secretary problem with an unknown distribution. Similarly,

Palley and Kremer [2014] provide participants with ranks for all but the selected option to hinder

learning about the distribution. In contrast, because our objective is to investigate learning, we

draw random numbers without any manipulation.

Finally, in a study by Kahan et al. [1967], groups of 22 participants were shown up to 200 numbers

chosen from either a le� skewed, right skewed or uniform distribution. In this study, as well as ours,

participants were presented with actual values instead of ranks. Also like our study, distributions
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of varying skew were used as stimuli. However, in Kahan et al. [1967], participants played the

game just one time and thus were not able to learn about the distribution to improve at the game.

In summation, for various reasons, prior empirical investigations of the secretary problem have

not been designed to study learning about the distribution of values. �ese studies either informed

participants about the parameters of the distribution before the experiment, allowed participants

to sample from the distribution before the experiment, replaced values from the distribution with

ranks, manipulated values to prevent learning, or ran single-shot games in which the e�ects of

learning could not be applied to future games. Our investigation concerns a repeated secretary

problem in which players can observe values drawn from distributions that are held constant for

each player from game to game.

3 EXPERIMENTAL SETUP
To collect behavioral data on the repeated secretary problem with learnable distributions of values,

we created an online experiment. �e experiment was promoted as a contest on several web logs

and a�racted 5,220 players who played the game at least one time. A total of 40,754 games were

played on the site. As users arrived at the game’s landing page, they were cookied and their browser

URL was automatically modi�ed to include an identi�er. �ese two steps were taken to assign all

plays on the same browser to the same user id and condition, and to track person-to-person sharing

of the game URL. Any user determined to arrive at the site via a shared URL (i.e., a non-cookied

user entering via a modi�ed URL) was excluded from analysis and is not counted in the 5,220 we

analyze. We note that including these users makes li�le di�erence to our results and that we only

exclude them to obtain a set of players that were randomly assigned to conditions by the website.

Users saw the following instructions. Blanks stand in the place of the number of boxes, which was

randomly assigned and will be described later.

You have been captured by an evil dictator. He forces you to play a game. �ere

are boxes. Each box has a di�erent amount of money in it. You can open

any number of boxes in any order. A�er opening each box, you can decide to

open another box or you can stop by clicking the stop sign. If you hit stop right

a�er opening the box with the most money in it (of the boxes), then you win.

However, if you hit stop at any other time, you lose and the evil dictator will kill

you. Try playing a few times and see if you improve with practice.

Immediately beneath the instructions was an icon of a tra�c stop sign and the message “When

you are done opening boxes, click here to �nd out if you win”. Beneath this on the page were

hyperlinks stating “Click here to open the �rst box”,“Click here to open the second box”, and so

on. As each link was clicked, an AJAX call retrieved a box value from the server, recorded it in

a database and presented it to the user. If the value in the box was the highest seen thus far, it

was marked as such on the screen. See Figure 9 in the Appendix for a screenshot. Every click and

box value was recorded, providing a record of every box value seen by every player, as well as

every stopping point. If a participant tried to stop at a box that was dominated by (i.e., less than)

an already opened box, a pop-up explained that doing so would necessarily result in the player

losing. A�er clicking on the stop icon or reaching the last box in the sequence, participants were

redirected to a page that told them whether they won or lost, and showed them the contents of

all the boxes, where they stopped, where the maximum value was, and by how many dollars (if

any) they were short of the maximum value. To increase the amount of data submi�ed per person,

players were told “Please play at least six times so we can calculate your stats”.
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Fig. 1. Cumulative distribution functions (CDFs) of the three distributions from which box values were
randomly drawn in the experiment. As probability density functions, the “low” distribution is strongly
positively skewed, the “medium” distribution is a uniform distribution, and the “high” distribution is strongly
negatively skewed.

3.1 Experimental Conditions
To allow for robust conclusions that are not tied to the particularities of one variant of the game,

we randomly varied two parameters of the game: the distributions and the number of boxes. Each

player was tied to these randomly assigned conditions so that their immediate repeat plays, if any,

would be in the same conditions.

3.1.1 Random assignment to distributions. �e box values were randomly drawn from one of

three probability distributions, as pictured in Figure 1. �e maximum box value was 100 million,

though this was not known by the participants. �e “low” condition was strongly negatively

skewed. Random draws from it tend to be less than 10 million, and the maximum value tends

to be notably di�erent than the next highest value. For instance, among 15 boxes drawn from

this distribution, the highest box value is, on average, about 14.5 million dollars higher than the

second highest value. In the “medium” condition numbers were randomly drawn from a uniform

distribution ranging from 0 to 100 million. �e maximum box values in 15 box games are on average

6.2 million dollars higher than the next highest values. Finally, in the “high” condition, boxes values

were strongly negatively skewed, and bunched up near 100 million. In this condition, most of

the box values tend to look quite similar (typically eight-digit numbers greater than 98 million).

Among 15 boxes, the average di�erence between the maximum value and the next highest is rather

small at only about 80,000 dollars. Note that the distributions are merely window dressing and are

irrelevant for playing the game. Players only need to a�end to percentiles of the distribution to

make optimal stopping decisions. However, the varying distributions leads to more generalizable

results than an analysis of a single, arbitrary se�ing.

3.1.2 Random assignment to number of boxes. �e second level of random assignment concerned

the number of boxes, which was either 7 or 15. While one would think this approximate doubling

in the number of boxes would make the game quite a bit harder, it only a�ects theoretically optimal

win rates by about 2 percentage points, as will be shown. Like with the distributions, varying the

number of boxes leads to more generalizable results.
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With either 7 or 15 boxes and three possible distributions, the experiment had a 2×3 design. In the

7 box condition, 902, 850, and 875 participants were randomly assigned to the low, medium, and high

distributions, respectively, and in the 15 box condition, the counts were 877, 900, 816, respectively.

�e di�erences in cell counts were non signi�cant (p = .3, by chi-square test), consistent with

successful random assignment. We next turn to describing how an optimal agent would go about

playing the game.

3.2 Optimal play
Before we begin to analyze the behavioral data gathered from these experiments we �rst discuss

how one would play this game optimally. Assume values Xt are drawn in an independently and

identically distributed fashion from a cumulative distribution function F . One period consists of a

player opening a box with a realization xt of Xt in box t . Periods are numbered in reverse order

starting at T , so t = T , . . . , 1. Periods are thus numbered in the reverse order of the boxes in the

game, that is, opening the �rst box implies being in the seventh period (of a seven box game). An

action is to select or reject. For example at time t , select box t , otherwise reject box t . Let

ht = max {xt , ...,xT } .

�e history summary ht+1 is visible to the player at time t . �e payo� of the player who selects

box t is {
1 ht = h1

0 ht < h1

.

�us, the player only wins when they select the highest value. �e problem is nontrivial because

they are forced to choose without knowing future realizations of the Xi .

Optimal players will adopt a threshold rule, which says, possibly as a function of the history,

accept the current value if it is greater than a critical dollar value ct . It is a dominant strategy to

reject any realization worse than the best historically observed, except for the last box which must

be accepted if opened. In addition, in our game, a pop-up warning prevented players from choosing

dominated boxes.

With a known distribution independently distributed across periods, the critical dollar value will

be the maximum of the historically best value and a critical dollar value that does not depend on

the history. �e reason that the critical dollar value does not depend on the history is that there is

nothing to learn about the future (known distribution) so it is either be�er to accept the current

value than wait for a be�er future value or not; the point of indi�erence is exactly our critical dollar

value. �us, the threshold comes in the form max{ct ,ht }.
In addition, ct is non-decreasing in t . Suppose, for the sake of contradiction, that ct > ct+1.

Taking any candidate in the interval (ct+1, ct ) entails accepting a candidate and then immediately

regre�ing it, because as soon as the candidate is accepted, the candidate is no longer acceptable,

being worse than ct .
Let i = T −t , and zi = F (ct ). We refer to the zt as the critical values, which are are the probabilities

of observing a value less than the critical dollar values ct . Let pt (h) be the probability of a win

given a history h. Table 1 provides the critical values zt and the probability of winning given a

zero history pt (0) for ��een periods. Derivations of these �gures are found in section A.1 in the

Appendix.

�e relevant entries for our study are the games of 7 and 15 periods. �ese calculations, which

coincide with those found in Gilbert and Mosteller [1966], who did not provide Equation (7) (see

the Appendix), show that experienced players, who know the distribution, can hope to win at best

62.2% of the games for 7 period games and just under 60% of the time for 15 period games. Note

that these numbers compare favorably with the usual secretary result, which are lesser for all game
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Table 1. Critical values and probability of winning given a known distribution of values for up to 15 boxes.

Boxes

le�, t
Critical

values zt

Pr(Win)

pt (0)
1 0 1

2 0.5 0.750

3 0.6899 0.684

4 0.7758 0.655

5 0.8246 0.639

6 0.8559 0.629

7 0.8778 0.622

8 0.8939 0.616

9 0.9063 0.612

10 0.9160 0.609

11 0.9240 0.606

12 0.9305 0.604

13 0.9361 0.602

14 0.9408 0.600

15 0.9448 0.599

lengths, converging to the famous 1/e as the length diverges. �us there is substantial value in

knowing the distribution.

As is reasonably well known, the value of the classical secretary solution can be found by

choosing a value k to sample, and then se�ing the best value observed in the �rst k periods as a

critical value. �e distribution of the maximum of the �rst k is F (x)k . �e probability that a be�er

value is observed in roundm is (1 − F (x))F (x)m−k−1
. Suppose this value is y; then this value wins

with probability F (y)T−m . �us the probability of winning for a �xed value of k and T periods is

k
T

∑T
m=k+1

1

m−1
. See the derivation in Section A.2 in the Appendix. �e optimal value of k maximizes

k
T

∑T
m=k+1

1

m−1
and is readily computed to yield Table 2. Comparing the probability of winning

shown in Tables 1 and 2 shows that making the distribution learnable allows for a much higher

rate of winning.

How well can players do learning the distribution? To model this, we consider an idealized agent

that plays the secretary problem repeatedly and learns from experience. �e agent begins with

the critical values and learns the percentiles of the distribution from experience; it will be referred

to as the “LP” (learn percentiles) agent. �e agent has a perfect memory, makes no mistakes, has

derived the critical values in Table 1 correctly, and can re-estimate the percentiles of a distribution

with each new value it observes. It is di�cult to imagine a human player being able to learn at a

faster rate than the LP agent. We thus include it as an unusually strong benchmark.

3.3 Learning Percentiles: The LP agent
�e LP agent starts o� knowing the critical values for a 7 or 15 box game in percentile terms. To be

precise, these critical values are the �rst 7 or 15 rows under the heading zt in Table 1. (Despite the

term “percentile”, we use decimal notation instead of percentages for convenience.) �e reason that

the LP agent is not given the critical values as raw box values is that these would be unknowable

because the distribution is unknown before the �rst play. However, it is possible to compute these

critical values as percentiles from �rst principles, as we have done earlier in this section and in the

Appendix. Armed with these critical values, the LP agent converts the box values it observes into
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Table 2. The probability of winning a game in the classical secretary problem (unknown distribution of values)
for up to fi�een boxes

Game Length Classical Secretary

(Periods) Problem Pr(Win)

1 1

2 0.50

3 0.50

4 0.458

5 0.433

6 0.428

7 0.414

8 0.410

9 0.406

10 0.399

11 0.398

12 0.396

13 0.392

14 0.392

15 0.389

percentiles in order to compare them to the critical values. �e �rst box value the LP agent sees gets

assigned an estimated percentile of .50. If the second observed box value is greater than the �rst, it

estimates the second value’s percentile to be .75 and re-estimates the �rst value’s percentile to be

.25. If the second value is smaller than the �rst, it assigns the estimate of .25 to the second value

and .75 to the �rst value. It continues in this way, re-estimating percentiles for every subsequent

box value encountered according to the percentile rank formula:

N< + 0.5N=
N

(1)

where N< is the number of values seen so far that are less than the given value, N= is the number

of times the given value has occurred so far, and N is the number of boxes opened so far.

A�er recomputing all of the percentiles, the agent compares the percentile of the box just opened

to the relevant critical value and decides to stop if the percentile exceeds the critical value, or

decides to continue searching if it falls beneath it, making sure never to stop on a dominated box

unless it is in the last position and therefore has no choice. Recall that a dominated box is one

that is less than the historical maximum in the current game. �e encountered values are retained

from game to game, meaning that the agent’s estimates of the percentiles of the distribution will

approach perfection and win rates will approach the optima in Table 1.

How well does the LP agent perform? Figure 2 shows its performance. Comparing its win

rate on the �rst play to the 7 and 15 box entries in Table 2, we see that the LP agent matches the

performance of the optimal player of the classic secretary problem in its �rst game. Performance

increases steeply over the �rst three games and comes within a point of the theoretical maxima

(black lines) in about a dozen games. In any given game a player can either stop when it sees the

maximum value, in which case it wins, or the player could stop before or a�er the maximum value,

in which case it loses. In addition to the win rates, Figure 2 also shows how o�en agents commit

these two types of errors. Combined error is necessarily the complement of the win rate so the
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Fig. 2. Rates of winning (red lines), stopping too soon (blue lines) and stopping too late (green lines) for the
LP agent. The theoretically maximal win rates for 7 and 15 boxes are given by the solid black lines.

steep gain in one implies a steep drop the other. Both agents are more likely to stop before the

maximum as opposed to a�er it, which we will see is also the case with human players.

�e LP agent serves as strong benchmark against which human performance can be compared.

It is useful to study its performance in simulation because the existing literature provides optimal

win rates for many variations of the secretary problem, but is silent on how well an idealized agent

would do when learning from scratch. In addition to win rates, these agents show the pa�erns of

error that even idealized players would make on the path to optimality. In the next section, we

will see how these idealized win and error rates compare to those of the human players in the

experiment.

4 BEHAVIORAL RESULTS: LEARNING EFFECTS
As 40,754 games were played by 5,220 users, the average user played 7.81 games. Roughly half

(51%) of users played 5 games or more, a quarter (24%) played 9 games or more, and a tenth played

16 games or more.

Prior research (e.g., Lee [2006]) has found no evidence of learning in repeated secretary problems

with known distributions. What happens with unknown but learnable distribution? As shown in

Figure 3, players rapidly improve in their �rst games and come within roughly �ve percentage

points of theoretically maximal levels of performance. �e le�most point on each red curve indicates

the how o�en �rst games are won. �e next point to the right represents second games, and so on.

�e solid black lines at .622 and .599 show the maximal win rate a�ainable by an agent with perfect

knowledge of the distribution. Note that these lines are not a fair comparison for early plays of the
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Fig. 3. Solid lines indicate the rates of winning the game and commi�ing errors for human players with
varying levels of experience. Error bars indicate ±1 standard error; when they are not visible they are smaller
than the points. The area of each point is proportional to the number of players in the average. The graph is
cut at 20 games as less than 1% of games played were beyond a user’s 20th. The dashed gray line is the rate
of winning the game for the LP agent.

game in which knowledge of the distribution is imperfect or completely absent; in pursuit of a fair

benchmark, we computed the win rates of the idealized LP agent shown in the dashed gray lines.

Performance in the �rst games, in which players have very li�le knowledge of the distribution is

quite a bit lower than would be expected by optimal play in the classic secretary problem with 7

(optimal win rate .41) or 15 boxes (optimal win rate .39). �us, some of the learning has to do with

starting from a low base. However, the classic version’s optima are reached by about the second

game and improvement continues another 10 to 15 percentage points beyond the classic optima.

One could argue that the apparent learning we observe is not learning at all but a selection e�ect.

By this logic, a common cause (e.g., higher intelligence) is responsible both for players persisting

longer at the game and winning more o�en. To check this, we created Figure 10, in the Appendix,

which is a similar plot except it restricts to players who played at least 7 games. Because we see

very similar results with and without this restriction, we conclude that Figure 3 re�ects learning

and not selection e�ects.

Having established that players do learn from experience, we turn our a�ention to what is being

learned. One overarching trend is that soon a�er their �rst game, people learn to search less. As

seen in Figure 4, in the �rst �ve games, the depth of search decreases by about a third of one box.

Players can lose by stopping too early or too late. �ese search depth results suggest that concern

with stopping too late is the primary concern that participants address early in their sequence of

games. �is is also re�ected in the rate of decrease in the “stopping a�er max” errors in Figure 3.

In both panels, rates of stopping a�er the maximum decrease most rapidly.
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Fig. 5. Le� panel: Empirical rates of stopping search for box values above and below the critical values. Right
panel: Version of 5(a) with data from simulated agents instead of human players. Only non-dominated boxes
are included in this analysis.

4.1 Optimality of box-by-box decisions
Do players’ decisions become more optimal with experience? Recall that when the distribution is

known one can make an optimal decision about when to stop search by comparing the percentile

of an observed box value to the relevant critical value in Table 1. If the observed value exceeds

the critical value, it is optimal to stop, otherwise it is optimal to continue search. In Figure 5, the

horizontal axis shows the di�erence between observed box values (as percentiles) and the critical

values given in Table 1. �e vertical axis shows the probability of stopping search when values

above or below the critical values are encountered. �e data in the le� panel are from human

players and re�ect all box-by-box decisions.

An optimal player who knows the exact percentile of any box value, as well as the critical values,

would always keep searching (stop with probability 0) when encountering a value whose percentile

is below the critical value. Similarly, such an optimal player would always stop searching (stop

with probability 1) when encountering a value whose percentile exceeds the critical value. Together

these two behaviors would lead to a step function: stopping with probability 0 to the le� of the

critical value and stopping with probability 1 above it.
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Figure 5(a) shows that on �rst games (in red), players tend to both under-search (stopping about

25% of the time when below the critical value) and to over-search (stopping at a maximum of 75%

of the time instead of 100% of the time when above the critical value). In a player’s second through

fourth games (in green) performance is much improved, and the probability of stopping search

is close to the ideal .5 at the critical value. �e blue curve, showing performance in later games,

approaches ideal step function. To address possible selection e�ects in this analysis, Figure 11 in

the Appendix is similar to Figure 5 except it restricts to the games of those who played a substantial

number of games. Because there are fewer observations, the error bars are larger but the overall

trends are the same suggesting again that these results are due to learning as opposed to selection

bias.

A�aining ideal step-function performance is not realistic when learning about the distribution

from experience. Comparison to the LP agent provides a baseline of how well one could ever hope

to do. Figure 5(b) shows that in early games, even the LP agent both stops and continues when it

should not. Failing to obey the optimal critical values is a necessary consequence of learning about

a distribution from experience. Compared to the human players, however, the LP agent approaches

optimality more rapidly. Furthermore, on the �rst game, it is less likely to make large-magnitude

errors. While the human players never reach the ideal stopping rates of 0 and 1 on the �rst game,

the LP agent does so when the observed values are su�ciently far from the critical vales.

Figure 5(a) shows that stopping decisions stay surprisingly close to optimal thresholds in ag-

gregate. Recall that the optimal thresholds depend on how many boxes are le� to be opened

(see Table 1). Because early boxes are encountered more o�en than late ones, this analysis could

be dominated by decisions on the early boxes. To address this, in what follows we estimate the

threshold of each box individually.

4.2 E�ects of unhelpful feedback
One may view winning or losing the game as a type of feedback for the player to indicate if the

strategy used needs adjusting. Taking this view, consider a player’s �rst game. Say this player

over-searched in the �rst game, that is, they saw a value greater than the critical value but did not

stop on it. Assume further that this player won this game. �is player did not play the optimal

strategy but won anyway, so their feedback was unhelpful. �e middle panel of Figure 6(a) shows

the errors made during a second game a�er over-searching and either winning or losing during

their �rst game. �e red curve tends to be above the blue curve, meaning that players who stopped

too late but didn’t get punished (blue) are less likely to stop on most box values in the next game,

compared to players who stopped too late and got punished (red).

Similarly, the bo�om panel shows the blue curve to be above the red curve, meaning that players

who stopped too early but didn’t get punished (blue) are more likely to stop on most box values in

the next game, compared to players who stopped too early and got punished (red).

�is �nding makes the results in Figures 3 and 5 even more striking as it is a reminder that the

participants are learning in an environment where the feedback they receive is noisy. Figure 6(b)

shows the errors in the ��h game given the feedback from the �rst game. Even a quick glance

shows that the curves are essentially on top of each other. �us, those who received unhelpful

feedback in the �rst game were able to recover—and perform just as well as those who received

helpful feedback—by the ��h game.
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Fig. 6. Errors in the second (le�) and fi�h (right) games given whether the first game was won (red curves) or
lost (blue curves). Vertically arranged panels indicate what type of error, if any, was made on the first game.

5 MODELING PLAYER DECISIONS
In this section we explore the predictive performance of several models of human behavior in the

repeated secretary problem with learnable distributions. We begin by describing our framework

for evaluating predictive models. We then describe the models, and compare their performance.

5.1 Evaluation and comparison
Our goal in this section is to compare several psychologically plausible models in terms of how

well they capture human behavior in the repeated secretary game to give us some insight as to

how people are learning to play the game. Since our goal is to compare how likely each model is

given the data the humans generated we use a Bayesian model comparison framework. �e models

we compare, de�ned in Section 5.2, are probabilistic, allowing them to express di�ering degrees of

con�dence in any given prediction. �is also allows them to capture heterogeneity between players.

In contexts where players’ actions are relatively homogeneous, their actions can be predicted with

a high degree of con�dence, whereas in contexts where players’ actions di�er, the model can assign

probability to each action.

A�er opening each box, a player makes a binary decision about whether or not to stop. Our

dataset consists of a set of stopping decisions yдt ∈ {0, 1} that the player made in game д a�er seeing

non-dominated box t . If the player stopped at box t in game д, then y
д
t = 1; otherwise, y

д
t = 0. Our

dataset also contains the history x
д
T :t =

(
x
д
T ,x

д
T−1
, . . . ,x

д
t
)

of box values that the player had seen

until each stopping decision. We represent the full dataset by the notation D.

In our se�ing, a probabilistic model f maps from a history x
д
T :t to a probability that the agent

will stop. (�is fully characterizes the agent’s binary stopping decision.) Each model may take a

vector θ of parameters as input. We assume that every decision is independent of the others, given

the context. Hence, given a a model and a vector of parameters, the likelihood of our dataset is the

product of the probabilities of its decisions; that is,

p (D | h,θ ) =
∏

(xдT :t ,y
д
t )∈D

[
f

(
x
д
T :t

��θ ) yдt + (
1 − f

(
x
д
T :t

��θ ) ) (
1 − x

д
T :t

) ]
.
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We compare models by how probable they are given the data. �at is, we say that a model f 1

has be�er predictive performance than model f 2
if p

(
f 1

��D)
> p

(
f 2

��D)
, where

p (f | D) =
p(f )p (D | f )

p(D)
. (2)

As we have no reason a priori to prefer any speci�c model, we assign them equal prior model

probabilities p(f ). Comparing the model probabilities de�ned in Equation (2) is thus equivalent to

comparing the models’ model evidence, de�ned as

p (D | f ) =

∫
Θ
p (D | f ,θ )p(θ )dθ . (3)

�e ratio of model evidences p
(
D

�� f 1
) /

p
(
D

�� f 2
)

is called the Bayes factor [e.g., see Kruschke,

2015]. �e larger the Bayes factor, the stronger the evidence in favor of f 1
versus f 2

.

�is probabilistic approach has several advantages. First, the Bayes factor between two models

has a direct interpretation: it is the ratio of probabilities of one model’s being the true generating

model, conditional on one of the models under consideration being the true model. Second, it

allows models to quantify the con�dence of their predictions. �is quanti�cation allows us to

distinguish between models that are almost correct and those that are far from correct in a way

that is impossible for coarser-grained comparisons such as predictive accuracy.

Finally, the Bayes factor contains a built-in compensation for over��ing. Models with a higher

dimensional parameter space are penalized, due to the fact that the integral in Equation (3) must

average over a larger space. �e more �exible the model, the more of this space will have low

likelihood, and hence the be�er the �t must be in the high-probability regions in order to a�ain

the same evidence as a lower-parameter model. In particular, this means that when one model

generalizes another but has equivalent (or even insu�ciently be�er) �t at its best-��ing parameters,

the more restricted model will have a high Bayes factor relative to the generalized model. We use

uninformative prior distributions for all of our parameters, which gives especially strong protection

against preferring over��ed models.

�e integral in Equation (3) is analytically intractable, so we followed the standard practice

of approximating it using Markov chain Monte Carlo sampling. Speci�cally, we used the PyMC

so�ware package’s implementation [Salvatier et al., 2016] of the Slice sampler [Neal, 2003] to

generate 25000 samples from each posterior distribution of interest, discarding the �rst 5000 as

a “burn in” period. We then used the Gelfand-Dey method [Gelfand and Dey, 1994] to estimate

Equation (3) based on this posterior sample.
1

5.2 Models
We start by de�ning our candidate models, each of which assumes that an agent decides at each

non-dominated box whether to stop or continue, based on the history of play until that point. For

notational convenience, we represent a history of play by a tuple containing the number of boxes

seen i , the number of non-dominated boxes seen i∗, and the percentile of the the current box qi as

estimated using Equation 1. Formally, each model is a function f : N ×N × [0, 1] → [0, 1] that

maps from a tuple (i, i∗,qi ) to a probability of stopping at the current box.

De�nition 5.1 (Value Oblivious). In the Value Oblivious model, agents do not a�end to the speci�c

box values. Instead, conditional upon reaching a non-dominated box i , an agent stops with a �xed

1
�is is nontrivial because the integral is with respect to the prior, not the posterior. However, most of the contribution to

the integral’s total comes from high-posterior regions of the parameter space, so simply sampling from the prior would

produce a very noisy estimate.
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probability pi .

f value-oblivious

(
i, i∗,qi

��� {pj }T−1

j=1

)
= pi .

De�nition 5.2 (Viable k). �e Viable k model stops on the kth non-dominated box.

f viablek (i, i∗,qi | k, ϵ) =

{
ϵ if i∗ < k,

1 − ϵ otherwise.

In this model and the next agents are assumed to err with probability ϵ on any given decision.

De�nition 5.3 (Sample k). �e Sample k model stops on the �rst non-dominated box that it

encounters a�er having seen at least k boxes, whether those boxes were dominated or not.

f sample (i, i∗,qi | k, ϵ) =

{
ϵ if i < k,

1 − ϵ otherwise.

When k = dT /ee and ϵ = 0, this corresponds to the optimal solution of the classical secretary

problem in which the distribution is unknown.

De�nition 5.4 (Multiple �reshold). �e Multiple �reshold model stops at box i with increasing

probability as the box value increases. We use a logistic speci�cation which yields a sigmoid

function at each box i such that at values equal to the threshold τi an agent stops with probability

0.5; an agent stops with greater (less) than 0.5 probability on values higher (lower) than τi , with

the probabilities becoming more certain as the value’s distance from τi grows. We also learn a

single parameter λ across all boxes representing how quickly the probability changes as a box value

becomes further from τi . Intuitively, λ controls the slope of the sigmoid
2
.

f thresholds

(
i, i∗,qi

��� λ, {τj }T−1

j=1

)
=

1

1 + exp[λ(qi − τi )]
.

When the thresholds are set to the critical values of Table 1 so that τi = zi , this model corresponds

to the optimal solution of the secretary problem with a known distribution.

De�nition 5.5 (Single �reshold). �e Single �reshold model is a simpli�ed threshold model in

which agents compare box values to a single threshold τ rather than box-speci�c thresholds.

f single-threshold (i, i∗,qi | λ,τ ) =
1

1 + exp[λ(qi − τ )]
.

Priors. Each of the models described above has free parameters that must be estimated from the

data. We used the following uninformative prior distributions for each parameter:

pi ∼ Uniform[0, 1] τ ,τi ∼ Uniform[0, 1]

k ∼ Uniform{1, 2, . . . ,T − 1} λ ∼ Exponential(µ = 1000).

ϵ ∼ Uniform[0, 0.5]

�e hyperparameter µ for precision parameters λ was chosen manually to ensure good mixing of

the sampler. Each parameter’s prior is independent; e.g., in the single-threshold model a given pair

(λ,τ ) has prior probability p(λ,τ ) = p(λ)p(τ ).
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(b) Fi�een Boxes

Fig. 7. Bayes factors for various models, compared to the lowest-evidence model in each game.

5.3 Model comparison results
Figure 7 gives the Bayes factors for each of the models of Section 5.2. �e models were estimated

separately for each number of games; that is, each model was estimated once on all the �rst games

played by participants, again on all the second games, etc. �is allows us to detect learning by

comparing the estimated values of the parameters across games. �e Bayes factor is de�ned as

a ratio between two model evidences. Since we are instead comparing multiple models, we take

the standard approach of expressing each Bayes factor with respect to the lowest-evidence model

for a given number of games. �ese normalized Bayes factors are consistent, in the sense that if

the normalized Bayes factor for model h1
is k times larger than the normalized Bayes factor for h2

,

then the Bayes factor between h1
and h2

is k . As a concrete example, the Sample k model had the

lowest model evidence for participants’ �rst games in the seven box condition; the model evidence

for the Value Oblivious model was 10
117

times greater than that of the Single �reshold model, and

10
48

times greater than that of the Viable k model.

In �rst game played, in both the seven box and ��een box conditions, the best performing

model was Value Oblivious. In all subsequent games, a threshold model was the best performing

model, and Viable k was the worst performing model. For the seven box condition, the multiple

threshold model outperformed the single-threshold model; in the ��een box condition, the single

and multiple threshold models had approximately equivalent performance.

Evidently, players behaved consistently with the optimal class of model for the known distribution—

multiple thresholds—as early as the second game. �is is consistent with the observations of

Section 4.1, in which players’ outcomes improved with repeated play. In addition, it is consistent

with the learning of optimal thresholds in Figure 5(a) but improves on that analysis because here

the most common stopping points—the early boxes—do not dominate the average. Furthermore,

players’ estimated thresholds approached the theoretically optimal values remarkably quickly.

Figure 8 shows the estimated thresholds for the seven box condition, along with their 95% posterior

credible intervals. �e estimated thresholds for the second and subsequent games are strictly

decreasing in the number of boxes seen, like the optimal thresholds. Overall, the thresholds appear

to more closely approximate their optimal values over time. A�er only four games, each threshold’s

2
We considered models with one λ per box but they did not perform appreciably be�er than the single λ models.
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Fig. 8. Estimated thresholds in the seven box games. The rightmost set of points are the optimal thresholds.
Error bars represent the 95% posterior credible interval.

credible interval contains the optimal threshold value.
3

�us, workers learned to play according

to the optimal family of models and learned the optimal threshold se�ings within that family of

models.

�e success of the Value Oblivious model in the �rst game suggests that neither of the threshold-

based models fully capture players’ decision making in their initial game. �is is further supported

by the best-estimates of thresholds for the �rst game: unlike subsequent games which have

thresholds that strictly decrease in number of boxes seen, in the �rst game the estimated thresholds

are strictly increasing in number of boxes seen. �is is consistent with players using a Value

Oblivious model. If players who stop on later boxes do so for reasons independent of the box’s

value, then they will tend to stop on higher values merely due to the selection e�ect from only

stopping on non-dominated boxes.

In sum, the switch from increasing to decreasing thresholds in Figure 8 is consistent with moving

from a value-oblivious strategy, which generalizes the optimal solution for the classical problem, to

a threshold strategy, which generalizes the optimal strategy for known distributions.

6 CONCLUSION: BEHAVIORAL INSIGHTS
�e main research question we addressed in this work is whether people improve at the secretary

problem through repeated play. In contrast to prior research (Campbell and Lee [2006], Lee [2006],

Seale and Rapoport [1997]), across thousands of players and tens of thousands of games, we

document fast and steep learning e�ects. Rates of winning increase by about 25 percentage points

over the course of the �rst ten games (Figure 3).

From the results in this article, it seems as if players not only improve, but also learn to play in

a way that approaches optimality in several respects, which we list here. Rates of winning come

within about �ve percentage points of the maximum win rates possible, and this average is taken

without cleaning the data of players who were obviously not trying. In looking at box-by-box

decision making, player’s probabilities of stopping came to approximate an optimal step function

a�er a handful of games (Figure 5). And similar deviations from the optimal pa�ern were also

3
In games 5–8, either one or two credible intervals no longer contain the corresponding optimal value; by game 9 all

thresholds’ credible intervals again contain their optimal values.
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observed in a very idealized agent that learns from data, suggesting that some initial deviation

from optimality is inevitable. Perhaps even more remarkably, they were able to do this with no

prior knowledge of the distribution and, consequentially, sometimes unhelpful feedback (Figure 6).

In the �rst game, player behavior was relatively well �t by the Value Oblivious model which had

a �xed probability of stopping at each box, independent of the values of the boxes. In later plays,

threshold-based decision making—the optimal strategy for known distributions—�t the data best

(Figure 7). Further analyses uncovered that players’ implicit thresholds were close to the optimal

critical values (Figure 8), which is surprising given the small likelihood that players actually would,

or could, solve for these values.

A few points of di�erence could explain the apparent departure from prior empirical results.

First, to our knowledge, ours is the �rst study to begin with an unknown distribution that players

can learn over time. Seemingly small di�erences in instructions to participants could have a large

e�ect. As mentioned, other studies have informed participants about the distribution, for example

its minimum, maximum, and shape. Second, some prior experimental designs have presented ranks

or manipulated values that made it di�cult to impossible for participants to learn the distributions.

�ird, past studies have used relatively few participants, making it di�cult to detect learning

e�ects. For example, Campbell and Lee [2006] have 12 to 14 participants per condition and assess

learning by binning the �rst 40, second 40, and third 40 games played. In contrast, with over 5,000

participants, we can examine success rates at every number of games played beneath 20 with large

sample sizes. �is turns out to be important for testing learning, as most of it happens in the �rst

10 games. While our se�ing is di�erent than prior ones, the change of focus seems merited because

many real-world search problems (such as hiring employees in a city) involve repeated searches

from learnable distributions.

A promising direction for future research would be to propose and test a uni�ed model of search

behavior that can capture several properties observed here such as: the e�ects on unhelpful feedback

(Figure 6), the transition from value-oblivious to threshold-based decision making (Figure 7), and the

learning of near-optimal thresholds (Figure 8). Having established that people learn to approximate

optimal stopping in repeated searches through distributions of candidates, the next challenge is to

model how individual strategies evolve with experience.
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A APPENDIX
A.1 Computation of critical values and probability of winning in known distribution

case
Note that

p1(h) = 1 − F (h). (4)

�is is the probability of observing something on the last round that exceeds the best observation.

Generally

pt (h) =

{ ∫ ∞
h F (x)t−1 f (x)dx + F (h)pt−1(h) ct ≤ h∫ ∞

ct
F (x)t−1 f (x)dx +

∫ ct
h pt−1(x)f (x)dx + F (h)pt−1(h) ct > h

=

{
1−F (h)t

t + F (h)pt−1(h) ct ≤ h
1−F (ct )t

t +
∫ ct
h pt−1(x)f (x)dx + F (h)pt−1(h) ct > h

(5)

To understand (5), �rst note that if the critical value is less than the historically best observation,

anything exceeding the historically best observation h is acceptable. �us, if something be�er, x , is

observed, it is accepted, in which case the player wins if all the subsequent observations are worse,

with probability F (x)t−1
. Otherwise, we inherit h and have a probability of winning pt−1(h) in the

next period.

If ct > h, then an acceptance occurs only if the realization x exceeds ct , in which case the

probability of winning remains F (x)t−1
. If the player experiences a value between h and ct , the

historical maximum rises but is not accepted. Finally, if the observation is less thanh, the historically

best observation is not incremented and the player moves to period t − 1.

Let p̄t be the value of pt arising when ct = ht . �en

Lemma A.1. p̄t (h) =
∑t

j=1

F (h)j−1−F (h)t
t+1−j
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Proof. �e proof is by induction on t . �e lemma is trivially satis�ed at t = 1. Suppose it is

satis�ed at t − 1. �en, from (5),

p̄t (h) =
1 − F (h)t

t
+ F (h)pt−1(h) =

1 − F (h)t

t
+ F (h)

t−1∑
j=1

F (h)j−1 − F (h)t−1

t − j

=
1 − F (h)t

t
+

t−1∑
j=1

F (h)j − F (h)t

t − j

=
1 − F (h)t

t
+

t∑
j=2

F (h)j−1 − F (h)t

t + 1 − j
=

t∑
j=1

F (h)j−1 − F (h)t

t + 1 − j

�

Note that, at the value xt = ct , the searcher must be indi�erent between accepting xt and rejecting,

in which case the history becomes ct . �erefore,

∂pt
∂ct

����
ht=ct

= 0.

�is gives

0 = −f (ct )F (ct )
t−1 + f (ct )p̄t−1(ct ),

or,

F (ct )
t−1 =

t−1∑
j=1

F (ct )
j−1 − F (ct )

t−1

t − j
. (6)

Equation 6 is intuitive, in that it says F (ct )
t−1 = p̄t−1(ct ), that is, the probability of winning given

an acceptance of ct , which is F (ct )
t−1

, equals the probability of winning given that ct is rejected

and becomes the going-forward history, which would give a probability of winning of p̄t−1(ct ).
�us,

pt (h) =

{ ∑t
j=1

F (h)j−1−F (h)t
t+1−j ct ≤ h

1−F (ct )t
t +

∫ ct
h pt−1(x)f (x)dx + F (h)pt−1(h) ct > h

Le�ing i = T − t , and zi = F (ct ) we can rewrite (6) to give

zt−1

t =

t−1∑
j=1

z j−1

t − zt−1

t

t − j
, or ztt =

t−1∑
j=1

z jt − z
t
t

t − j
(7)

A.2 Computation of probability of winning in unknown distribution case
�e probability of winning for a �xed value of k and T periods is

�us,

1 =

t−1∑
j=1

z j−tt − 1

t − j
=

t−1∑
i=1

z−it − 1

i
(8)

pt (h) =

{ ∑t
j=1

h j−1−ht
t+1−j zt ≤ h

1−ztt
t +

∫ zt
h pt−1(x)dx + hpt−1(h) zt > h

(9)

∫ ∞

0

kF (x)k−1 f (x)
T∑

m=k+1

F (x)m−k−1

∫ ∞

x
f (y)F (y)T−mdydx



GOLDSTEIN, MCAFEE, SURI, and WRIGHT 21

Fig. 9. Screenshot of the a 15 box treatment with 3 boxes opened.

=

T∑
m=k+1

∫
1

0

kxm−2

∫
1

x
yT−mdydx =

T∑
m=k+1

∫
1

0

kxm−2
1 − xT−m+1

T −m + 1

dx

=

T∑
m=k+1

k
T−m+1

∫
1

0

xm−2 − xT−1dx =
T∑

m=k+1

k
T−m+1

(
1

m−1
− 1

T

)
= k

T

T∑
m=k+1

1

m−1

A.3 Appendix Figures
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