
35October 2016 | Volume 20, Issue 4 GetMobileGetMobile October 2016 | Volume 20, Issue 434

Tanzirul Azim University of California, Riverside
Oriana Riva and Suman Nath Microsoft Research

Editors: Nic Lane and Xia Zhou

uLink:
user-defined
deep links in
mobile apps
Excerpted from “uLink: Enabling User-Defined Deep Linking
to App Content,” from ACM MobiSys 2016, Proceedings of
the 14th ACM International Conference on Mobile Systems,
Applications, and Services Singapore with permission.
http://dl.acm.org/citation.cfm?id=2906416 © ACM 2016

FIGURE 1. Example of views uLink can support. Mobile deep links can supply only (a).

(a) An independent view (b) A view dependent
on a previous view

(c) A view dependent
on a UI action

(tap on “POLLEN” tab)

Web deep links are instrumental to many fundamental user
experiences, such as navigating from one web page to another,
bookmarking a page, or sharing it with others. Such experiences
are not possible with individual pages inside mobile apps, since
historically mobile apps did not have links equivalent to web deep links.
Mobile deep links, introduced in recent years, still lack many important
properties of web deep links. Unlike web links, mobile deep links need
significant developer effort to be exposed, cover a small number of predefined
pages, and are defined statically to navigate to a page for a given link, but not to
dynamically generate a link for a given page. We have built uLink, a novel deep
linking mechanism that addresses these problems. uLink is implemented as an

application library, which transparently
tracks data- and UI-event-dependencies of
app pages, and encodes the information in
links to the pages; when a link is invoked,
the information is utilized to recreate the
target page quickly and accurately. uLink
also employs techniques, based on static
and dynamic analysis of the app, that can
provide feedback to users about whether
a link may break in the future due to, e.g.,
modifications of external resources such
as a file the link depends on. We have
implemented uLink on Android, and
tested with 30+ apps. Compared to existing
mobile deep links, uLink requires minimal
developer effort, achieves significantly
higher coverage, and can provide accurate
user feedback on a broken link.

uLink GOES BEYOND
MOBILE DEEP LINKS
Mobile deep links are URIs that point to
specific locations within apps[1] [2] [3].
A mobile deep link can launch an already
installed app on a user’s mobile device
(similar to loading the home page of a
website) or it can directly open a specific
location within the app (similar to deep
linking to an arbitrary web page). For

example, the URI fandango://thelego
movie_159272/movieoverview directly
navigates to the page with the details of the
“The Lego Movie” in the Fandango app.

Even though mobile deep linking is
an important first step towards accessing
any arbitrary location within an app, it
lacks many useful properties of web deep
linking. First, unlike web deep links, mobile
deep links require nontrivial developer
effort – several lines of codes per deep
link – resulting in a low adoption rate even
within the top apps [4]. Second, unlike its
web counterpart, mobile deep links have
poor coverage – a small number of locations
within an app, predefined by the developer,
are directly accessible via deep links. Finally,
today’s deep links are defined statically
by developers to facilitate navigation to a
target page given its link; the dual process
of dynamically determining the link for a
given page is not possible even if a deep link
to that page exists.

In [5], we introduced uLink, a lightweight
approach that addresses the above problems.
uLink requires minimal developer effort,
it supports dynamic link creation, and it
achieves significantly higher coverage than
existing mobile deep links. Moreover, it is

compatible with existing mobile deep links
(i.e., the underlying mobile OS handles them
in the same way). All this enables many novel
user experiences that so far existed only in
the web.

A key challenge uLink addresses is
improving coverage – creating links to any
app location (referred to as app view or view
hereafter), including to the ones that depend
on previous views or on user interactions.
uLink uses two key mechanisms. The first
mechanism is shortcut. uLink continuously
monitors for explicit data dependency
between successive runtime views in an
app. In Figure 1, view (a) launches view
(b), by providing the location “New York,
NY” selected by the user in (a). In some
cases, e.g., if (a) and (b) are separate
Android activities (i.e., pages), uLink can
transparently capture the data transferred
from (a) to (b) and encode it in the link to
(b). This allows uLink to quickly invoke the
link to go to (b), without first going to (a).
More importantly, it improves coverage to
views that depend on data from previous
views (location in this example).

Shortcuts do not cover all app views.
The view shown in Figure 1(c) is created
when the user taps on the “POLLEN”
tab, and there is no explicit data transfer
between (b) and (c) for uLink to capture
– both views are within the same Android
activity. To create links to such views, uLink
uses a limited form of record and replay.
uLink continuously records UI actions
in the current view, and encodes them in
the link (we call this a shortcut-and-replay
link). When the link is invoked, uLink
first directly navigates to the most recent
shortcut-reachable view (e.g., (b) in Figure
1), and then replays the UI actions to
navigate to the target view.

Figure 2 shows two examples of links:
the first link points to page 598 in a Kindle
book, and the second encodes the sequence
of actions for requesting a lift in the Lyft
app (the result is the dialog for entering
payment). After being saved, a link can later
be invoked to quickly access the view, by
taking shortcuts to views that depend only
on data encoded in the link (e.g., book page),
and/or by replaying, in the background, the

[HIGHLIGHTS] [HIGHLIGHTS]

P
h

o
to

,
is

to
c
k
p

h
o

to
.c

o
m

GetMobile October 2016 | Volume 20, Issue 436 37October 2016 | Volume 20, Issue 4 GetMobile

UI events encoded in the link (a clickable
button in the second link in Figure 2).

uLink is implemented on Android, as a
library that a developer includes in the app
with minimal effort. The library continuously
monitors various data dependencies and UI
events of the current view so that, anytime,
it can dynamically create a link with the
dependencies encoded in it.

uLink DESIGN
A page in a mobile app may contain many
views: the default view is what is shown
on the screen when the user navigates to
the page (Figure 1 (b)), and the user can
navigate to a different view within the same
page by UI interactions such as selecting
a tab (Figure 1(c)), choosing a date from
a date picker control, filling out a search
box, or clicking on a search button. A UI
interaction can also lead from a view to the
default view of a separate page.

There are three broad classes of views a
user may want to link to in an app:

1. Stateless view: A view whose state does
not depend on states created in previous
pages/views (e.g., a view showing weather,
as in Figure 1(a)).
2. Stateful view: A view whose state
depends on app states created in previous
pages (e.g., showing breathing forecast at
a location selected in the previous page,
as in Figure 1(b)).
3. UI-driven view: A view created by
UI events generated on the same page
(e.g., Figure 1(c), created by tapping on
the “POLLEN” tab in Figure 1(b)).

Existing mobile deep links support
stateless views only. They cannot observe
the internal state of the app (i.e., they live
outside the app), and this is precisely the
reason why they cannot cover stateful or
UI-driven views that depend on states (e.g.,
location selected by the user) and UI events
(e.g., tapping on a particular UI control)
inside the app. In contrast, uLink supports
links to all the three types of views, and thus
achieves its high coverage goal.

KEY MECHANISMS
uLink uses a novel technique called
shortcuts to generate links to stateful views.
We observe that a page in an app is usually
instantiated through a launcher method
responsible for rendering the page in the
foreground (startActivity(intent,options) in
Android and prepareForSegue:(uiStoryboard
Segue) in iOS). This method usually expects
as input a description of the page to render
and possibly other parameters, which are
not known to processes external to the app.
Our key insight is that uLink can program
links to stateful views by demonstration: by
observing how views are assembled during
user interaction, uLink can learn how
to re-construct them. Specifically, uLink
continuously intercepts all messages sent
to the page launcher method, so as to infer
message structures and input parameters
necessary to render a view. uLink encodes
the message structure and input parameters
in a URI generated for the view. To open a

saved link, the uLink library simply invokes
the page launcher method with properly
structured messages assembled using the
parameters stored in the URI. We call these
shortcut-only links. The above idea is simple
and can be implemented by overloading the
launcher method of the framework page
classes.

The above technique of intercepting
data passed between pages does not capture
UI events within a page, and hence is not
sufficient to recreate a UI-driven view.
To support such views, uLink adopts a
limited form of record and replay. uLink
continuously monitors UI events triggered
during user interactions, and associated
event handlers that are fired. To reduce
overhead, uLink monitors UI events only
in the current page; when the user moves
to a different page, the UI events of the
previous page are discarded. To create a
link to a UI-driven view, uLink encodes
two pieces of information in the link: (1)
input parameters to launcher method of
the current page (same as shortcut-only
links), and (2) UI events that lead the user
from the page’s default view to the current
view. When the link is invoked, uLink first
launches the page’s default view by using its
input parameters, and then replays the UI
events to navigate to the target view. The
UI events are replayed in the background,
and so the user sees the same click-and-go
experience as shortcut-only links. We call
such links shortcut-and-replay links.

FIGURE 2. Examples of shortcut-only and shortcut-and-replay links.

Compared to record and replay tools
[6] [7] [8], this approach does not require
any recording start point, and it is much
faster. On the other hand, it is limited by
the fact that it captures only UI events
(button clicks, checkbox selections, etc.).
Capturing I/O and sensor access operations
would bring us closer to the ideal world
of deterministic replay, but monitoring
these events would lead to unsupportable
overheads in terms of annotations that
developers would have to provide, in terms
of OS modifications, or in terms of runtime
overhead. By capturing only UI events,
uLink hits a sweet spot between existing
lightweight but low-coverage deep links and
heavyweight but high coverage full-blown
record and replay.

LINK VALIDATION
An important challenge uLink must address
is identifying captured links that may not
open correctly at some later point in time.
Broken links are common in the web as
well. A link may not open correctly e.g., if
the target view opens a file that is deleted
after the link is saved, if a user is logged out
from the app, or if some UI events cannot
be captured or replayed (e.g., Android does
not provide APIs for applying long taps on
list items).

uLink provides feedback to users (or
applications on their behalf) at the time
of link creation and of link execution. Let
us consider the example of file system
resources through the four cases shown in
Figure 3. uLink can replay correctly a link to
Page 2 in case a), c), and d), and in case b) if
the file doesn’t change after link creation.

uLink can correctly replay a link to
Page 2 in case (a) and (c) because the
link either has no external dependencies

or the dependencies do not affect the
content of Page 2. Also in case (d), uLink
can correctly open Page 2 because if the
external resource somehow affects the
content of Page 2, its value must propagate
through the data passed from Page 1 to
Page 2. Finally, in case (b), Page 2 reads
an external resource: uLink may not be
able to correctly open Page 2, or it may be
able to open the page, but with potentially
different content. This may happen if the
content of the external resource is modified
after the link is created.

To address situations like case (b), uLink
notifies users or companion applications at
link creation or execution time that the link
may not be replayed correctly, if a specific
resource is modified. We call this process
link validation. We rely on an offline,
automated analysis of the application
code to generate an app-specific summary
of resource dependencies of relevant
event handlers. By design, this approach
cannot be as accurate as heavyweight API
instrumentation, taint tracking or other
approaches requiring OS modifications, but
it provides a first, practical approximation
of the problem, while not compromising
our goals of low overhead and minimal
developer effort.

COMPANION SERVICES
We have built two uLink companion
services. (1) Bookmark (left-hand side
of Figure 4) collects links to content,
actions, tasks a user wishes to save. Each
time a user shakes her phone, a link to the
current view is saved into the Bookmark
app. Links are opened by clicking on
them. (2) Users browse lots of content
inside their apps (e.g., hotels to book,
restaurants to visit, news article to read),

and sometimes would like to be able to
search through “all the stuff they have seen,”
and not through all the content those apps
(or the web) offer. The Stuff I’ve Seen app
(right-hand side of Figure 4) transparently
logs content the user sees in her apps,
indexes it, and provides a basic search
capability.

EVALUATION
The uLink library was integrated
successfully in 34 Android apps. Among
the top 1000 Android apps, we selected
apps based on popularity and compatibility
with Android 5.0 from a variety of app
categories, with the exclusion of games.

Developer effort
uLink is implemented as an application
library. To make an app uLink-enabled, a
developer includes the uLink library and
extends the uLinkPage class provided by
uLink, instead of the original Page class
provided by the underlying framework
(this is needed to overload the framework’s
page launcher method). Once the library
is added, shortcut-only links are readily
enabled. To support shortcut-and-replay
links, app developers must add one line of
code in each UI event handler of the app.

We counted how many LoC we had to
modify to integrate uLink in our 34 test
apps. To obtain an estimate for closed
source apps, we counted the LoC after
decompiling the app to Java source code
using the dex2jar (dex2jar) [9] and jd-gui
(JD-GUI) [10] tools. On average, shortcut-
only required to change only 8.4 LoC in
the app code. The smallest effort was 1 LoC

FIGURE 3. uLink can replay correctly a link to Page 2 in case a), c), and d), and in case
b) if the file doesn’t change after link creation.

FIGURE 4. Bookmark (left) and Stuff-I’ve-Seen
(right) services we have built using uLink.

r

w r

a)

Page
1

Page
1

file file file

Page
1

Page
1

Page
2

Page
2

Page
2

Page
2

b) c) d)

[HIGHLIGHTS] [HIGHLIGHTS]

uLink IS
DISTRIBUTED AS
A SMALL LIBRARY
THAT DEVELOPERS
INCLUDE IN THEIR
APPS WITH TINY
CHANGES

GetMobile October 2016 | Volume 20, Issue 438 39October 2016 | Volume 20, Issue 4 GetMobile

(Lyft), and the largest 32 LoC (Dictionary.
com). The developer effort for shortcut-
and-replay is higher (196 LoC on average)
because it depends on the number of UI
event handlers in the app, but the changes
are still relatively few (on average 0.07%
LoC of the entire codebase needed to
be changed). Since these changes are
mechanical, they could also be automated.

LINK COVERAGE AND
CORRECTNESS
We evaluated whether uLink can provide
high coverage of an app views. We picked 6
apps, and manually enumerated all possible
views in them. Then, we manually saved
links to every such view, and opened them
to verify whether the result was correct.
Across the 6 apps we found that on average
there were 55 views one may save in a link.
uLink provided coverage for 71% of them
(see Figure 5). In particular, shortcut-only
alone provided an average of 19 links per
app, and successfully enabled links to
almost all pages’ default views in the tested
apps. The unsupported links were mainly
due to failures in replaying UI events caused
by binary instrumentation. In fact, for NPR
News, the only open source app of the 6 we
tested, the coverage was 91%.

We also explored whether uLink can
generate links that are reliable over time. We
found that links are relatively stable over a
short period of time (e.g., 50 days after link
creation links still work) and provide the
expected content. Links with dependencies
on file system, sensors, and databases can
break. We conducted a controlled study and
found that in 94% of the cases uLink could
detect a broken link and provide detailed
feedback on the root cause (e.g., a file was
deleted). uLink currently monitors only file
system dependencies at fine-granularity.
With the addition of fine-grained database
analysis, we expect the accuracy to be close
to 100%.

CONCLUSION
uLink is a novel approach to enable deep
links in mobile apps. uLink is distributed
as a small library that developers include in
their apps with tiny changes. Compared to
mobile deep links, uLink provides higher
coverage of an app views with less developer
effort. uLink goes beyond the state-of-the-
art: it provides links that are stateful and

that can be specified by a user on demand,
and it achieves these benefits without
incurring large resource overheads nor
modifying the OS. Although usability is not
(yet) a goal of our system, uLink provides
the first elements towards that goal: fast
experience, no specification of a session
start point, and feedback for links that may
not work properly. n

Tanzirul Azim received his Ph.D. in Computer
Science from the University of California,
Riverside. His dissertation work mainly focused
on designing and developing techniques for
fault discovery, localization, and recovery in
smartphone applications. As well, he obtained
his Bachelor of Science from the computer
science and engineering department of
Bangladesh University of Engineering and
Technology.

Oriana Riva is a researcher at Microsoft
Research, Redmond. Prior to joining MSR
in 2010, she received her PhD from the
University of Helsinki, and was a postdoctoral
scholar at ETH Zurich. Her research interests
revolve around mobile systems, including the
programming abstractions, developer tools
and cloud infrastructures required to expand
their role in the computing world.

Suman Nath received his Ph. D. and Masters
from Carnegie Mellon University, and B.Sc.
from Bangladesh University of Engineering
and Technology. He is a principal researcher
at Microsoft Research. His research interests
lie in the intersection of mobile, sensing,
and cloud systems. His research work has
been recognized by best paper awards in
ACM MobiSys 2012, SSTD 2011, IEEE ICDE
2008, USENIX NSDI 2006, and IEEE/CreateNet
BaseNets 2004. He is an ACM Distinguished
Scientist.

100 Shortcut-only links
With-replay links
Unsupported links

NPR News BBC NewsLyft Amazon
Kindle

TuneIn
Radio

Duolingo

lin

ks

80

60

40

20

0

FIGURE 5. Link coverage with 6 apps (NPR News is open source, others are closed source).

REFERENCES

[1] “Enabling Deep Links for App Content,” [Online].
Available: https://developer.android.com/training/
app-indexing/deep-linking.html.

[2] “App Links,” [Online]. Available: https://
developers.facebook.com/docs/applinks.

[3] “Support Universal Links,” [Online]. Available:
goo.gl/9YP40S.

[4] U. Blog, “How Many of the Top 200 Mobile
Apps Use Deeplinks?,” [Online]. Available: http://
marketingland.com/study-22-percent-top-200-
apps-using-deep-links-90177

[5] T. Azim, O. Riva and S. Nath, “uLink: Enabling
User-Defined Deep Linking to App Content,” in
MobiSys, 2016.

[6] Z. Mao and J. Flinn, “Can deterministic replay be
an enabling tool for mobile computing?,” in Proc.
of the 12th Workshop on Mobile Computing Systems
and Applications (HotMobile ’11), 2011.

[7] L. Gomez, I. Neamtiu, T. Azim and T. Millstein,
“RERAN: Timing-andTouch-sensitiveRecordandR
eplayforAndroid. In Proc. of the 2013 International
Conference on Software Engineering,” in ICSE’13,
2013.

[8] Y. Hu, T. Azim and I. Neamtiu, “Versatile yet
lightweight record-and-replay for android,” in
OOPSLA’15, 2015.

[9] dex2jar. [Online]. Available: https://github.com/
pxb1988/dex2jar.

[10] JD-GUI. [Online]. Available: http://jd.benow.ca/.

[HIGHLIGHTS]

