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We present an infinite family of protocols to distill magic states for T -gates that has a low

space overhead and uses an asymptotic number of input magic states to achieve a given target

error that is conjectured to be optimal. The space overhead, defined as the ratio between

the physical qubits to the number of output magic states, is asymptotically constant, while

both the number of input magic states used per output state and the T -gate depth of the

circuit scale linearly in the logarithm of the target error δ (up to log log 1/δ). Unlike other

distillation protocols, this protocol achieves this performance without concatenation and the

input magic states are injected at various steps in the circuit rather than all at the start of

the circuit. The protocol can be modified to distill magic states for other gates at the third

level of the Clifford hierarchy, with the same asymptotic performance. The protocol relies on

the construction of weakly self-dual CSS codes with many logical qubits and large distance,

allowing us to implement control-SWAPs on multiple qubits. We call this code the “inner

code”. The control-SWAPs are then used to measure properties of the magic state and detect

errors, using another code that we call the “outer code”. Alternatively, we use weakly-self

dual CSS codes which implement controlled Hadamards for the inner code, reducing circuit

depth. We present several specific small examples of this protocol.

The possibility of a large scale quantum computer relies on fault-tolerant architectures, in which

errors are corrected faster than they are created [1–3]. The standard approach is to use stabilizer

codes to protect logical qubits from noise [4, 5], and perform quantum gates at the encoded level.

The overhead of the fault-tolerance is only polynomial in the logarithm of the desired accuracy,

but in practice the overhead is estimated to be overwhelmingly large [6, 7]. Particularly expensive

operations are non-Clifford gates such as the π/4-rotation (T-gate) and Toffoli gate. A compelling

approach is to inject a special state, called a magic state, into a Clifford-only circuit, and pass the

cost of implementing the non-Clifford operation to the preparation of the magic states, which are
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distilled from noisy ones [8–10].

There exist several distillation protocols for the magic state (T -state) using specialized quantum

error correcting codes [8, 10–12]. Each code can provide a fixed degree of fidelity improvement that

is given by the code distance. In order to achieve arbitrary good fidelity, one typically concatenates

small routines. In terms of the number of input magic states of low fidelity per one output magic

state of high fidelity, the best protocols to date are those in Refs. [12, 13]. However, these protocols

require a large batch of thousands of magic states to be useful.

In this paper, we introduce an infinite family of distillation protocols, extending one of the very

first protocols by Knill [8], and another by Meier, Eastin, and Knill [11]. Our protocol produces n

T -magic states using at most cn qubits and achieves at least c′n-th order error suppression under

the assumption that the sole noise source is the T gate, where c, c′ are small universal constants.

Since the degree of error suppression is high, there is no need to concatenate small routines, reducing

the space overhead significantly.

Our protocol is also asymptotically superior (conjectured to be optimal) in terms of noisy T

count. For any fixed odd d ≥ 5, we show that the number of noisy T gates per one output magic

state with error suppressed to d-th order converges to d exactly in the large code length limit.

Beyond the magic states for T gates, our protocol can distill magic states for rotation by π/2k for

k = 3, 4, . . . adapting the idea of Ref. [14], and any gate in the third level of Clifford hierarchy [15].

(See also Ref. [16] for smaller angle (k ≥ 3) rotations, though we do not use ideas there.) For the

latter, the asymptotic performance is similar to the T gate case.

Small instances of our family demonstrates reduction of space overhead, with a modest input T

count. If noisy π/4 rotations can be directly done on qubits, an instance of our family operates

on 34 qubits including measurement ancillas, produces 15 T -magic states with 5th order error

suppression, and requires 29 noisy T gates per output. In comparison, to the authors’ knowledge,

any previous protocol that can operate on less than 50 qubits have either have lower order of error

suppression, or requires more non-Clifford gates per output.

Recent innovations show that the π/4-rotation and Toffoli gate can be implemented fault-

tolerantly on a class of error correcting codes [17–25]. These schemes achieve computational

universality through local operations while circumventing no-go theorems [26, 27] by going back

and forth between two code spaces. This approach removes the need for magic states, but, it is

not a simple question to tell which approach is better. This question depends on an architecture

and underlying physical qubits’ characteristic, and thus we leave the realistic cost analysis and

comparison to future work.
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The organization of the present paper is as follows. We start in Section I with a basic explanation

of our ideas by exhibiting examples of small sizes. Section II explains how to convert magic state

distillation protocols for T gates into those for Toffoli gates. In Section III we show that any weakly

self-dual CSS code can be used in distillation protocols by implementing measurement of Clifford

operators. In Section IV, we give asymptotic constructions of the codes, in the limit of either large

distance or large code length. In Section V, we give results of numerical simulations; in this section

we also present some specific additional small size protocols that are not described elsewhere in

the paper. We conclude with discussion in Section VI. In Appendix A, we give details, including

stabilizer checks, for some of the specific codes used in the paper. Appendix B gives circuits for

some of the protocols used. Appendix C describes unexpected relations among different distillation

protocols. Appendix D explains an extension to qudits, using classification of symmetric forms over

finite fields in Appendix E.

Throughout this paper, all classical codes that we consider will be linear codes over the binary

field F2 and all quantum codes will be qubit stabilizer codes (except for Appendix D). Given a

bit vector v, we use |v| to denote its Hamming weight. Our magic state is the (+1)-eigenstate

|H〉 = cos π8 |0〉+ sin π
8 |1〉 of the Hadamard operator H. We use matrices

X =

0 1

1 0

 , Y =

0 −i
i 0

 , Z =

1 0

0 −1

 , (.1)

H =
1√
2

1 1

1 −1

 , T = e−iπY/8 =

cos π8 − sin π
8

sin π
8 cos π8

 . (.2)

A self-orthogonal subspace of some vector space is a subspace such that the inner product of any two

vectors in the subspace vanishes. A weakly self-dual CSS code is a quantum code whose stabilizer

group is invariant under conjugation by the product of the Hadamard operator on all qubits; we

call this product a “transversal Hadamard”.

I. BASIC DISTILLATION PROTOCOLS

Distillation protocols for magic states to date can be put roughly into three classes. Those in the

first class implement a non-Clifford π/4-rotation to a stabilizer state such as |+〉 or |0〉 [10, 12, 16].

The non-Clifford rotation must be done fault-tolerantly, so the protocols in this class focus on

finding error correcting codes that admits a transversal non-Clifford rotation. This requires the

underlying code to have a special symmetry, which is rather rare. The protocols in the second
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class [8, 9, 11, 13, 14, 28] implement measurements of “stabilizers” of the magic state, based on

the fact that a magic state in the third level of Clifford hierarchy [15] is an eigenstate of a Clifford

operator. To measure a Clifford operator one needs a non-Clifford operation which has been

implemented fault-tolerantly by a distance-two code. The third class uses yet different symmetries

of codes [10, 29], and has high threshold for distillation, but the success probability does not reach

1 even with perfect input magic states.

Our scheme in the present paper belongs to the second class, and is an extension of the idea of

Knill [8]. There are two levels of error correcting codes in our scheme, which we call inner and outer

codes. Roughly speaking, the outer codes specify a certain set of measurements of Clifford operators

on a set of input magic states, and the inner codes specify how to implement these measurements.

We illustrate aspects of our ideas by two examples. They are not the best protocols in regards

to e.g. the total number of non-Clifford gates and states, but will be simple to explain. A more

general class of protocols is presented in later sections.

Without loss of generality, by a standard Clifford twirling argument, we can assume that each

π/4 rotation and undistilled magic state suffers from independent Y errors with probability ε. We

refer to this error model as the stochastic error model.

A. Trivial outer code

If we could implement the control-Hadamard, then the distillation is trivial: Prepare an ancilla

qubit in |+〉 state, apply the control-Hadamard with the control on the ancilla and the Hadamard on

an arbitrary target qubit, and measure the ancilla in X-basis to accept +1 outcome. The accepted

target qubit is projected onto the magic state.

The control-Hadamard belongs to the third level of Clifford hierarchy, and thus cannot be

implemented with Clifford operations. To obtain an approximate control-Hadamard with noisy

non-Clifford rotations, we must use an error correcting code that can implement H on the logical

qubits fault-tolerantly.
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1. [[7, 1, 3]] inner code

To this end, we observe that the Steane code [30] admits a transversal Hadamard [8, Sec. IX].

The stabilizers are

I I I X X X X

I X X I I X X

X I X I X I X

,

I I I Z Z Z Z

I Z Z I I Z Z

Z I Z I Z I Z

, (I.1)

the group generated by which is fixed under the H⊗7 : Xi ↔ Zi, and the logical operator pair is

Z Z Z Z Z Z Z , X X X X X X X (I.2)

which are interchanged by the transversal Hadamard. Using an identity

H = TZT † = e−iπY/8 Z eiπY/8 (I.3)

we see that the logical control-Hadamard is possible by replacing the middle Z by the control-Z.

The T gate can be noisy as they act on the physical qubits of the Steane code.

This way, we have built a Hadamard measurement routine that is fault-tolerant. Then, a magic

state distillation protocol is as follows:

1. Prepare a noisy magic state in the “data” register, and |0〉 in 6 check registers, and embed

them into the Steane code

2. Prepare an ancilla in |+〉 and implement control-H⊗7 using Eq. (I.3), where the control is

the ancilla and the targets are the physical qubits of the Steane code.

3. Inverse the embedding of the Steane code.

4. Measure the ancilla in the X basis, the check qubits in the Z basis.

5. Upon +1 outcome in all 7 measurements, a distilled magic state is in the data qubit.

Let us examine the pattern of errors that may go undetected. There are two possibilities.

• The initial magic state is faulty, and this is undetected due to malfunction of the control-

Hadamard.

• The noisy π/4 rotations induce a logical error.
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The first possibility is because a pair of simultaneous errors sandwiching the control-Z can alter

the ancilla measurement:

|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ e−iπY/8Y Z Y eiπY/8

= (Z ⊗ I)
(
|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ e−iπY/8 Z eiπY/8

)
. (I.4)

Thus, the first possibility occurs with probability ε3 to leading order. One can easily see that this is

the only possibility for weight 2 errors from the control-Hadamard to escape. The second possibility

occurs at order ε3 since Steane’s code has distance 3. Overall, the protocol operates on 8 qubits

(assuming T gates are applied in place), consuming 14 T -gates and 1 state of error rate ε, producing

1 output T -state whose error rate is O(ε3).

It is useful to think of the above protocol as a Hadamard measurement (H-measurement) routine

that introduces a new error of order ε3 to the target, and another error of order ε2 to the control.

The error on the control is easy to fix; repeat the measurement.1 The error on the target is inherent

to the choice of the inner quantum code, and should thus be overcome by another quantum code.

2. [[17, 1, 5]] inner code

There exists a distance 5 code on 17 qubits with H⊗17 being the logical Hadamard. It is an

instance of the color code [21, 31]. We include the binary matrix for this code in Appendix A. In a

similar way as above, this H-measurement routine has error rate O(ε5) on the target, and O(ε2) on

the control. By repeating the H-measurement twice using this inner code, the control’s error rate

becomes O(ε4). The control error goes undetected only if the initial magic state is faulty. Overall,

only weight 5 errors may be undetected. This protocol consumes 17× 4 + 1 = 69 noisy T ’s.

In fact, we can pipeline the two H-measurement routines: First, H-measure a noisy magic state

using [[7, 1, 3]] code, and then H-measure the outcome using [[17, 1, 5]] code.2 Hence, we have

obtained a distillation routine with fifth order error suppression that operates on 18 qubits in total,

consuming 1 + 7× 2 + 17× 2 = 49 noisy T ’s. It is worth comparing this with the 69→ 1 protocol

in the preceding paragraph. By using codes of smaller distance in the early stage of the protocol,

we obtain a more efficient protocol. We loosely call this modification as a pipelined protocol. The

circuit is in Fig. B.2 in Appendix B.

1 This corresponds to having redundant checks in the outer code.
2 Interestingly, the protocol using Steane code, and the pipelined protocol appear to have deep relation with triply

even codes. See Appendix C.
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B. Repetition outer code

Imagine we have nouter noisy magic states that are to be distilled. Under the stochastic error

model, we can think of the noisy magic states as an probabilistic ensemble of nouter-bit strings where

0 denotes a good magic state, and 1 denotes a bad one. The protocol in the previous subsection

examines one qubit at a time, and in terms of the bit strings, this amounts to checking individual

bits. If our goal is to suppress the overall error to d-th order where d < nouter, the bit-wise check

might be overkill. A better way is to devise a measurement routine that can check the parity of

several bits.

1. [[4, 2, 2]] inner code

The simplest case is when nouter = 2 and the desired error suppression is quadratic. If we can

measure H⊗2, then by postselecting on +1 outcome the noisy state is projected to the even parity

subspace, which is O(ε2) away from the pair of perfect magic states. We can describe the situation

by saying that we have a repetition code on nouter = 2 bits with one parity check. This is an outer

code.

A corresponding inner code should implement control-H⊗2 to accuracy O(ε2), both in the target

and the control. Meier, Eastin, and Knill have designed such a measurement routine [11]. The four

qubit code [[4, 2, 2]] whose stabilizers are X⊗4 and Z⊗4 admits the transversal Hadamard H̄ = H⊗4

as a logical operator. If we choose the logical operators asX̄1 = X X I I

Z̄1 = I Z Z I

X̄2 = Z Z I I

Z̄2 = I X X I
(I.5)

then the transversal Hadamard swaps the two logical qubits. Using Eq. (I.3), this means that

we can implement control-Swap to accuracy O(ε2). Now, a trick is to use the control-Swap twice

sandwiching the Hadamard:

[CSwap12]H1[
CSwap12] = [C(H1 ⊗H2)]H1 (I.6)

where the superscript C denotes the control that is common for both control-Swaps, and the

subscripts 1 and 2 denote the qubits the operator acts on. The extra H1 does no harm since the

magic state is its eigenstate. The obtained control-H⊗2 is accurate up to error O(ε2) on the target

since the distance of the four-qubit code is 2, and also O(ε2) on the control due to Eq. (I.4). This
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is a quadratic distillation protocol operating on 5 qubits, consuming 18 noisy T ’s to produce 2

outputs.3

2. [[16, 6, 4]] inner code and pipelining

The classical Hadamard code [16, 5, 8] has a property that every code word has even overlap

with any other code word. By the CSS construction, using these classical codewords as stabilizers,

we obtain a [[16, 6, 4]] code; see Appendix A 1 b for the stabilizers. We will later show that there is

a choice of logical operators such that the transversal Hadamard H⊗16 implements simultaneous

pairwise swaps on the three pairs of logical qubits. This implies that we can measure any even

product H̃⊗2, H̃⊗4, or H̃⊗6 of Hadamards on kinner = 6 magic states. For example, we can generalize

Eq. (I.6) to

[CSwap12][
CSwap34]H1H3[

CSwap12][
CSwap34] = [C(H1 ⊗H2 ⊗H3 ⊗H4)]H1H3. (I.7)

The H-measurement routine puts quadratic error to the control and quartic error to the target.

Imagine that nouter = 6 magic states are laid on a ring. We measure H⊗2 on every nearest

neighboring pair of the magic states. There are six checks in total. The measurement pattern

follows the parity checks of the classical repetition code; there is a redundancy in the checks, which

turns out to be necessary. Let us see how this achieves quartic error suppression. In order for an

error on one of nouter magic states to pass the measurement routines, the two checks that involve

that input state must both be faulty. This process gives an O(ε5) error, i.e., the probability of

both checks being faulty is O(ε4), so including the error on the input magic state the error is O(ε5).

Note that if we did not have a redundancy in the checks of the outer code, using only 5 checks, one

qubit would be checked only once and we would achieve only third order error suppression. More

generally, any process involving one or more input magic state errors gives an error which is at

most O(ε5). The dominant error after all the H-measurements is then from the logical error by the

H-measurement routine, which happens with probability O(ε4). Overall, the protocol consumes

6 + 6× (16× 4) = 390 T ’s to produce 6 outputs.

We can pipeline the [[4, 2, 2]] code routine in front of the [[16, 6, 4]] code routine to lower the

complexity of the distillation circuit. For instance, we can run the three H-measurement routines

by the [[4, 2, 2]] code on pairs of magic states (12), (34), and (56), and then run the three H-

measurement routines by [[16, 6, 4]] code on pairs of magic states (23), (45), and (61). The number

3 Meier, Eastin, and Knill [11] compresses the circuit for the control-H⊗2 to reduce the number of T ’s of the protocol

from 18 to 10, but we do not explain it here. See also Campbell and O’Gorman [28].
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of T ’s consumed is now 6 + 3× (4× 4) + 3× (16× 4) = 246, while the number of outputs is still 6.

It is left to the readers to show that the modified version also achieves quartic error suppression.

We have simulated the modified version, and the results can be found in Section V. The circuit is

in Fig. B.1 in Appendix B.

II. THIRD LEVEL OF CLIFFORD HIERARCHY

The protocol above can be straightforwardly generalized to distilling other magic states to

implement gates at the third level of the Clifford hierarchy. Consider a state |ψ〉 on q qubits such

that |ψ〉 = U |φ〉 where U is a gate at the third level of the Clifford hierarchy [15], and |φ〉 is a

stabilizer state. Here we show that any such state |ψ〉 can be distilled. An example of such a

state |ψ〉 is the magic state to produce a CCZ gate, which is equivalent to the Toffoli gate up to a

Hadamard on the target [1].

|ψ〉 = CCZ︸︷︷︸
U

( |0〉+ |1〉√
2

)⊗3
︸ ︷︷ ︸

|φ〉

. (II.1)

As |φ〉 is a stabilizer state, we can identify q operators, S(1), S(2), . . . , S(q), which are products

of Paulis, generating the stabilizer group of |φ〉, so that |φ〉 is the unique (up to global phase) +1

eigenstate of those operators. For the CCZ, we see S(1) = X1, S(2) = X2, and S(3) = X3. Then,

the state |ψ〉 is the unique +1 eigenstate of the operators

W (a) ≡ US(a)U †, for a = 1, . . . , q. (II.2)

These operators W (a) commute with each other by construction, and belong to the second level of

the hierarchy, the Clifford group. For the CCZ, we see W (1) = X1(
CZ)23, W (2) = X2(

CZ)13, and

W (3) = X3(
CZ)12.

Here is an example protocol for CCZ state distillation using three copies of the [[4, 2, 2]] code,

comprising a [[12, 6, 2]] code. We regard the three copies as a single [[12, 6, 2]] code and index the

logical qubits by 1, . . . , 6. We encode one CCZ state stabilized by W (a) into logical qubits 1, 3, 5

and another stabilized by W ′(a) into logical qubits 2, 4, 6, where a = 1, 2, 3. Consider a variant of

Eq. (I.6)

[C(Swap12Swap34Swap56)](W (a)135 ⊗ I246)[C(Swap12Swap34Swap56)]

= [C(W (a)135 ⊗W (a)246)](W (a)135 ⊗ I) (II.3)
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where the control qubit is common for every gate. The simultaneous control-Swaps are implemented

by the control-H⊗12 on the [[12, 6, 2]] code, where the control-H⊗12 in turn is implemented by

noisy T gates. Thus, we obtain a measurement routine for W (a)⊗W ′(a).4 Then the protocol is

to measure W (1)W ′(1), W (2)W ′(2), and W (3)W ′(3). Overall, this protocol takes 2 noisy CCZ

states and 3× (12× 4) = 144 noisy T gates to produce 2 CCZ states at a lower error rate. Note

that this explicit example protocol performs worse than existing ones in terms of non-Clifford gate

count [32–34].

By applying the Clifford stabilizers W uniformly at random to a noisy magic state for CCZ, it

becomes a mixture of eigenstates of W ’s. Hence we may assume an error model where an error

flips at least one of W (1),W (2),W (3) with probability ε. Since the measurement routine puts

measurement error at rate O(ε2) and logical error at rate O(ε2), the protocol achieves quadratic

error reduction for CCZ state. For higher order reduction, one should use inner and outer code of

higher distances.

A related discussion on the error model for the T state is given in Section V A.

In passing, we note that the Clifford unitary V123 = (C1Z2)(C1X2)X2X3 on three qubits 1, 2, 3 is

a stabilizer of the CCZ state |CCZ〉 = 1√
8

∑
a,b,c=0,1(−1)abc |abc〉. Since the CCZ state is permutation

invariant, we obtain six such stabilizers. They do not commute, but any triple of them uniquely

determines the CCZ state. The controlled version can be implemented with only four T gates [32]

(See also [33]): C0V123 = T2(
C1Z2)T2(

C0Z2)T
†
2 (C1Z2)T

†
2 (C0X3). It might be possible to use these

stabilizers with normal codes such as [[7, 1, 3]] and [[17, 1, 5]], but because they do not commute the

resulting measurement routine rejects faulty inputs with a probability less than 1, even in the limit

ε→ 0.

III. INNER CODES

In this section, we find a general class of inner codes that can be used in distillation protocols.

On the first read, a reader may wish to skip the discussion on symmetric forms, noting only the

magic basis in Definition III.3, and the construction of codes in Theorem III.5.

4 Since W (1),W (2),W (3) are the same up to permutations of qubits, the measurement routine can in fact measure

any product W (a)⊗W ′(b) for a, b = 1, 2, 3 on the pair of CCZ states.
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A. Symmetric forms over F2

We consider finite dimensional vector spaces over the binary field F2. The space Fn2 is equipped

with a symmetric dot product v · w =
∑

i viwi ∈ F2. This dot product on Fn2 is non-degenerate,

i.e., for any nonzero vector v ∈ Fn2 there is a vector w ∈ Fn2 such that v · w 6= 0. Let S be a null

(self-orthogonal) subspace of Fn2 , on which the dot product identically vanishes. Since S is null, the

dot product of Fn2 canonically induces a dot product on the quotient space Fn2/S by [v] · [w] := v ·w
where [v] and [w] denote the equivalence classes (members of the quotient space) represented by

v and w, respectively. Let S⊥ denote the orthogonal complement of S with respect to the dot

product.

Lemma III.1. The induced dot product on S⊥/S is non-degenerate.

Proof. First, we claim that (S⊥)⊥ = S. It is clear by definition that S ⊆ (S⊥)⊥. Interpreting

the orthogonal complement as the solution space of a system of linear equations, we see that the

claim holds by dimension counting. For [v] ∈ S⊥/S, if [v] · [w] = 0 for any w, then v belongs to

(S⊥)⊥ = S, implying that [v] = 0 ∈ S⊥/S.

For any basis {[v(1)], . . . , [v(k)]} of S⊥/S, we consider the symmetric matrix Λ representing the

dot product:

Λab = v(a) · v(b). (III.1)

Lemma III.1 is equivalent to saying that the matrix Λ is non-singular. Any basis change of S⊥/S
induces a congruent transformation Λ → MTΛM where M is the invertible matrix of the basis

change. We consider equivalence classes of Λ under the congruent transformations.

Lemma III.2 (Classification of symmetric forms over F2). A non-degenerate symmetric form over

F2 is equivalent to one of the two non-equivalent choices:5

In =


1

. . .

1

 , λn = In/2 ⊗

0 1

1 0

 . (III.2)

5 Any finite dimensional symmetric forms over the binary field is the intersection form of a closed topological surface

X, defined by the cup product H1(X;F2)×H1(X;F2)→ H2(X;F2) ∼= F2 of cohomology. Indeed, In corresponds

to the connected sum of n copies of RP 2, and λn the connected sum of n/2 copies of 2-torus. The classification

in the lemma is the orientability of a given surface, and Eq. (III.3) is expressing the fact that two RP 2’s can be

turned into a torus in the presence of another RP 2. We thank Michael Freedman for pointing this out.
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Proof. The two options are not equivalent since λn means that the every vector is self-orthogonal,

whereas In implies that not every vector is self-orthogonal. For completeness, we give an elementary

algorithmic proof by manipulating symmetric matrices.

First, we claim that any symmetric matrix can be brought to a direct sum of Ip and λq for some

p ≥ 0 and q ≥ 0, where q is even. If there is a nonzero diagonal element one can bring this to the

top-left by permutation. Gaussian elimination on the first column and row reveals that I1 is a

direct summand. Induction gives a direct summand Ip, and we are left with a symmetric matrix

Λ′ with the zero diagonal. Any column cannot be zero since Λ′ is non-singular, and thus some

permutation brings 1 to (2, 1) and (1, 2) entries of Λ′. Gaussian elimination on the first and second

columns and rows reveals a direct summand λ2. By induction, our first claim is proved.

The second claim is that Ip+2 ⊕ λq−2 ∼= Ip ⊕ λq whenever p, q > 0, whose proof is immediate:
1 1 1

1 1 0

1 0 1




1

1

1




1 1 1

1 1 0

1 0 1

 =


1 0 0

0 0 1

0 1 0

 (III.3)

Therefore, whenever p > 0, we have Ip ⊕ λq ∼= Ip+q. If p = 0, there is nothing more to prove.

The classification motivates the following notion of bases.

Definition III.3. Given a null subspace S ⊆ Fn2 , a basis of S⊥/S is called (p, q)-magic if the

symmetric matrix Λ representing the dot product on S⊥/S among the basis vectors is equal to

Ip ⊕ λq for some p ≥ 0 and q ≥ 0. We call a magic basis normal if q = 0, or hyperbolic if p = 0.

We summarize the results of this section into a theorem.

Theorem III.4. For any self-orthogonal subspace S ⊆ Fn2 , there exists a (p, q)-magic basis for

S⊥/S, where p+ q = dimF2 S⊥/S. If p > 0 and q > 0, then a (p+ 2, q − 2)-magic basis exists.

B. CSS codes from self-orthogonal matrices

It is standard to associate a bit string v = (v1, . . . , vn) to a Pauli operator: X(v) = Xv1
1 · · ·Xvn

n

where Xj is the Pauli σx on qubit j, and Z(v) = Zv11 · · ·Zvnn where Zj is the Pauli σz on qubit j.

The commutation relation is that

X(v)Z(w) = (−1)v·wZ(w)X(v). (III.4)
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The CSS construction of quantum codes applies to a self-orthogonal (null) subspace S ⊆ Fn2 :

For every vector v ∈ S, we define an X-stabilizer X(v), as well as Z-stabilizer Z(v). The set of

equivalence classes of X-type (Z-type) logical operators is then in one-to-one correspondence with

S⊥/S. The number of logical qubits is thus

k = dimF2 S⊥/S = n− 2 dimF2 S. (III.5)

We encode logical qubits by choosing a complete set of logical operators X̃(j) and Z̃(j) as follows.

Choose a (p, q)-magic basis {v(1), . . . , v(p), w(1), . . . , w(q)} of S⊥/S.6 Then, we define
X̃(i) = X(v(i))

Z̃(i) = Z(v(i))

for i = 1, . . . , p,


X̃(p+2j−1) = X(w(2j−1))

Z̃(p+2j−1) = Z(w(2j))


X̃(p+2j) = Z(w(2j−1))

Z̃(p+2j) = X(w(2j))

for j = 1, . . . , q/2. (III.6)

By definition of the magic basis, these logical operators obey the canonical commutation relation of

Pauli operators on k qubits:

X̃(a)Z̃(b) = (−1)δabZ̃(b)X̃(a). (III.7)

Note that the commutation relation can be realized with arbitrary signs ± in the choice of the

logical operators, but induced Clifford logical operators will depend on the signs. We enforce (III.6)

in order for the transversal Hadamard H̄ = Hninner to be the logical Hadamard
∏kinner
a=1 H̃(a).

We have defined CSS codes based on self-orthogonal subspaces over F2:

Theorem III.5. Let S ⊆ Fn2 be a self-orthogonal subspace with a (p, q)-magic basis of S⊥/S. Then,

there exists a CSS code on n qubits with p+ q logical qubits and a choice of logical operators such

that transversal Hadamard H⊗n implements the logical Hadamards for the logical qubits 1, . . . , p,

and simultaneously the swaps between the logical qubit p+ 2j − 1 and p+ 2j where j = 1, . . . , q/2.

We will call a weakly self-dual CSS code normal if a normal magic basis exists, and hyperbolic

otherwise. It is possible for a normal code to have an even number of logical qubits, an even number

of physical qubits, and an even distance. Every hyperbolic code, however, must have an even

number of logical qubits, an even number of physical qubits, and an even distance. For instance, in

Sec. I, the Steane code [[7, 1, 3]] and the [[17, 1, 5]] color code are normal. The [[4, 2, 2]] code and

6 Here we have abused notation to denote an equivalence class (a member of the quotient space) by a representative.
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the [[16, 6, 4]] are hyperbolic. We have used (0, 2)-magic basis for [[4, 2, 2]], and (0, 6)-magic basis

for [[16, 6, 4]]. The “H-code” by Jones [13] is a normal code with parameters [[k + 4, k, 2]] where k

is even. Below, we will mostly use normal codes with (p, 0)-magic basis for distillation protocols.

We note that the CSS codes derived from a self-orthogonal matrices are not too restrictive. By

representing each qubit in any stabilizer code of parameters [[n, k, d]] by Majorana modes, we obtain

a weakly self-dual CSS code of parameters [[4n, 2k, 2d]] [35]. We will briefly review this mapping in

Section IV B, where we will also present other families of such codes with improved rate.

IV. CODING THEORY AND ASYMPTOTIC PERFORMANCE

A. Asymptotic Performance

In this section we consider the asymptotic properties of the class of protocols defined above, for

appropriate choice of inner and outer codes. We ignore all possibilities of pipelining, and use only

a single inner and outer code to define each protocol; this will reduce the question of asymptotic

properties to the question of the existence of code families with certain properties.

“Asymptotic” will refer to one of two limits. In the first limit, we consider a family of protocols

parametrized by d, the order of reduction in error. An instance in the family reduces error probability

from ε to a constant times εd in the limit of small ε. We prove that

Theorem IV.1. There is a family of protocols parametrized by an integer d ≥ 1 to obtain a d-th

order reduction in error, using a total of Θ(d) physical qubits, producing nouter = Θ(d) magic states.

The total number of T gates used is nT = Θ(d2), so that the number of T gates per magic state is

Θ(d). The T -gate depth of the circuit is also Θ(d), where the T -gate depth refers to the circuit

depth assuming that an arbitrary Clifford can be executed in depth 1.

In the second limit, we fix d and consider a family of protocols parametrized by nouter, the

number of magic states produced. We prove that

Theorem IV.2. For any odd d ≥ 5, there is a family of protocols using nouter · (1 + o(1)) physical

qubits, producing nouter magic states with a d-th order reduction in error. The total number of T

gates used is

nT = d(1 + o(1))nouter. (IV.1)

The reason d is odd is that the minimal weight of an error that is not caught in the protocol

due to wrong H-measurement outcomes is always odd.
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Given one particular protocol with εout = Cεdin consuming nT /nouter T gates per output, an

infinite family of protocols can be defined by concatenation with itself. For this concatenated family,

the number of T gates to achieve an arbitrarily small error rate δ in output magic states scales like

O((log 1/δ)γ) where the scaling exponent [10, 12] is

γ = logd(nT /nouter). (IV.2)

Smaller values of γ reflect asymptotically more efficient distillation protocols. The triorthogonal

codes [12] achieve γ → log2(3), and “multilevel” protocol [13] achieves γ → 1+. We will comment

on this multilevel protocol in Discussion VI. It was conjectured that no protocol could achieve

γ < 1 [12]. Both families in Theorems IV.1 and IV.2 achieve γ → 1+.

We note that the measure γ slightly underestimates the T -count efficiency of the family in

Theorem IV.1. In order to achieve an arbitrary small final error rate δ from a fixed initial error

rate, say, ε = 0.01, we can pick a member Pd of the family of error reduction degree d such that

δ > Cd(ε/2d
2)d. Here Cd is the leading coefficient of the output error probability of the protocol

Pd, which is at most the number of ways that weight d errors occur among nT = O(d2) T gates;

Cd ≤ αd2d for some α > 0 independent of d. For the condition δ > Cd(ε/d
2)d, it suffices that

d > (log(1/δ) + logα)/ log(1/ε). We initially distill magic states to suppress the error rate from ε

to ε′ = ε/d2, by using a concatenated protocol Pinit. This takes ninit = O(log d)γ input magic states

per output magic states for some γ > 1. We can then feed Pd with the outputs from Pinit at error

rate ε′. It follows that

nT /nouter = O(d) · ninit = O(log(1/δ)(log log 1/δ)γ) (IV.3)

magic states at error rate ε suffice to achieve final accuracy δ. Thus, the scaling of nT /nouter is

linear in log(1/δ) up to a logarithmic correction. (One can iterate the argument recursively to

further slow down the dependency on 1/δ.)

Theorem IV.2 will use normal codes. The reduced number of T gates required to implement

checks with a normal code is essential to obtaining the number of T gates in the theorem (we would

need roughly twice as many using hyperbolic codes). This explains why d is chosen odd. The case

of d = 1 is of course trivial: no codes are needed. Thus, the reader may wonder why the case d = 3

is not used; this is explained further below.

Theorems IV.1, IV.2 will follow almost immediately given certain families of inner and outer

codes obeying certain properties of the codes that we define below. We will prove these theorems

given these properties in this subsection and we construct families of inner and outer codes with

these properties in subsections IV B, IV C.
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Consider first the inner code. This code will have kinner logical qubits and ninner physical qubits.

The distance of the inner code will be at least d. Consider then the effect of errors in the T gates

inside the inner code; i.e., in the T gates acting on the encoded state. To obtain d-th order reduction

in error, it suffices to consider the case that fewer than d errors occur in such T gates. Since the

inner code distance is at least d, these errors cannot produce a logical error. There is one way,

however, in which these errors can have an effect without being detected by the inner code. It is

possible that a pair of errors act inside the inner code, both on T gates acting on the same qubit.

The effect of these errors is to cause an error in the check being measured by the inner code, i.e., if

the check was measuring a given product of W operators specified by the outer code, we instead

measure the opposite sign; we call this a “measurement error”.

The possibility of measurement errors affects some of the properties that we require of the outer

code. Of course we need the outer code to have distance at least d, as otherwise a pattern of fewer

than d errors in the input magic states could cause an undetectable error, but this is not sufficient.

It is necessary that a pattern of fewer than d errors causes enough checks to be violated so that

even a small number of measurement errors will lead to an error detected by the code. This is

defined by the property of “sensitivity” that we now define.

The outer code will have m parity checks, encoded in an m-by-nouter parity check matrix M ,

where each row of the matrix indicates a given check. We can measure rows of this matrix with

even weight using an hyperbolic inner code and rows with odd weight using a normal inner code.

For simplicity we will either have all rows have even weight or have all rows use odd weight so that

we can use the same inner code for all checks. (More generally, one could use both a hyperbolic

and a normal code.) Then, this inner code must have kinner greater than or equal to the maximum

row weight of M . The difference between the row weight of M and kinner must be an even number.

In this case, we say that the inner code can implement the checks of the outer code.

Definition IV.3. An m-by-nouter parity check matrix M for a classical linear code is said to be

(d̃, s)-sensitive if any nonzero bit vector v of length nouter with |v| ≤ d̃, we have |Mv| ≥ s. That

is, for any such vector, the number of violated parity checks is at least s.

We emphasize that sensitivity is a property of the check matrix of the outer code, rather than

the codewords of the outer code, and in some examples the rows of the check matrix may be linearly

dependent. A (d̃, s)-sensitive parity check matrix is (d̃− 1, s)-sensitive by definition.

Lemma IV.4. Given an m-by-nouter parity check matrix M such that 2|Mv| + |v| ≥ d for any

nonzero v (e.g. (d− 1, d−12 )-sensitive M), and given an inner code of parameters [[ninner, kinner, d]]
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that can implement the checks defined by M , the protocol yields d-th order reduction in error. The

protocol overall takes nouter noisy magic states, 2ninnerm noisy T gates when the inner code is

normal, or 4ninnerm when even, and outputs nouter magic states.

Proof. Any error pattern inside the inner codes with weight less than d cannot cause a logical error.

Thus, if an error pattern inside the inner code does not violate a stabilizer of the inner code, it

either has no effect or it leads to an error in measurement of a check of the outer code; the latter

possibility requires at least two errors inside the inner code. Any input state with |v| ≥ 1 errors

will violate at least |Mv| ≥ (d− |v|)/2 checks of the outer code. If no violation of these checks is

detected, there must be at least 2|Mv| errors on T gates inside the inner code. Thus, there must

be at least d errors in total.

The input T gate and state count is clear from Section I.

We now define some asymptotic properties of the codes needed.

Definition IV.5. A family of quantum error correcting codes with increasing number of qubits n

has good rate if the number of encoded qubits k is Θ(n) and has good distance if the distance d

is Θ(n).

Definition IV.6. Given a family of outer codes with increasing nouter, we say that this family has

good sensitivity if each code in the family is (d̃, s)-sensitive for d̃ = Θ(nouter) and s = Θ(nouter).

Definition IV.7. Given a family of outer codes with increasing nouter, we say that this family has

good check rate if the parity check matrix is m-by-nouter with m = Θ(nouter).

Proof of Theorem IV.1. In subsection IV B, we show that families of both hyperbolic and normal

inner codes with good rate and distance exist and in subsection IV C we show that families of outer

codes with good check rate, good sensitivity, and even row weight exist. Combining these results

with Lemma IV.4, Theorem IV.1 follows.

Proof of Theorem IV.2. In subsection IV B, we show that, for any d, there exist families of both

hyperbolic and normal inner codes with increasing ninner such that kinner/ninner → 1. To prove this

theorem, we will only need the result for normal inner codes. Consider some code from this family

with given kinner, ninner. In subsection IV C we show Lemma IV.15 which we reproduce here:

Lemma. Given integers d̃, w ≥ 1 and s ≥ 2, there exists an m× nouter parity check matrix M that

is (d̃, s)-sensitive where m = nouter · s/w and every row of M has weight w exactly.
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Choose w = kinner. Choosing d̃ ≥ d − 1 and s = (d − 1)/2, this gives us an outer code such

that the checks can be performed by the given inner code and we need to perform nouter(s/w) =

nouter(s/kinner) checks with the inner code. Each such check with the inner code requires using

2ninner T gates, so that the total number of T gates needed to perform the checks with the inner

code is equal to 2nouters(ninner/kinner). Additionally, we need to perform nouter T gates to create

the input magic states to the outer code. Thus, the total number of T gates is

nT = nouter(1 + 2sninner/kinner)

= nouter(d+ (d− 1)(ninner/kinner − 1)). (IV.4)

Taking ninner large so ninner/kinner → 1, we conclude nT → nouterd.

We can now see better why we needed d ≥ 5 in Theorem IV.2. This is because for d = 3, we have

s = 1 and Lemma IV.15 does not apply. The reader will see later why the case s = 1 is excluded

from that lemma; roughly, this is because in this case, each bit participates in only a single check

and we would lack certain expansion properties for a certain graph defined later.

B. Inner Codes

In this subsection, we give asymptotic constructions of inner codes. There are at least two

constructions of weakly self-dual codes with good rate and distance in the literature. We review

these, before giving an alternative probabilistic proof which has some advatanges.

First, in Ref. 36, it is shown that given any ratio d/n, one can find a family of weakly self-dual CSS

codes with n qubits and distance d and given ratio d/n achieving a rate k/n→ 1−2H2(d/n), where

H2 is the binary entropy function. The codes found in that paper all are hyperbolic codes. However,

we can obtain normal codes from them by a “puncturing procedure” (see also [37, Sec. 3.5]):

Definition IV.8. Given a hyperbolic weakly-self-dual CSS code C on n qubits with k logical

qubits, define a “punctured code” C ′ as follows. Choose a qubit i (the code C ′ may depend upon

the choice of i). Write the stabilizer generators of C such that only one X-type and one Z-type

generator is supported on i. Define C ′ by removing qubit i and removing the stabilizer generators

support on i. Then C ′ has n′ = n − 1 qubits and k + 1 logical qubits. The code C ′ is a normal

code by construction.

If C is non-degenerate with distance d, then C ′ has distance d′ ≥ d− 1. More generally, d′ + 1 is

greater than or equal to the minimum weight of an operator which commutes with the stabilizer
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group of C, because given an X-type logical operator O in C ′ then either O or OXi must commute

with the stabilizer group of C. Indeed, one may show that puncturing the codes of Ref. 36 reduces

the distance by at most 1.

The only disadvantage of this proof is that it is a greedy proof that we not know how to

implement efficiently. While it would be desirable to find an explicit family of codes achieving

this rate, we do not know how to do this. However, another construction in the literature is a

randomized construction which allows us to give codes which, with high probability, have the

desired distance. Unfortunately, this construction will only achieve k/n→ 1/2−H2(2d/n). This

construction uses a general method to construct weakly self-dual CSS codes in Ref. 35.

Consider a stabilizer code Cqubit which acts on n physical qubits and has k logical qubits and

distance d. From this code, one can derive a code for Majorana fermions CMajorana which acts on

4n Majorana modes and has k logical qubits and distance 2d, where now the distance refers to

minimum weight of a product of Majorana operators that is a logical operator. The code CMajorana

is derived in the following way: For each physical qubit of Cqubit, one introduces four Majorana

modes, γ0, γ1, γ2, γ3, and declares that the product γ0γ1γ2γ3 is a stabilizer of CMajorana. For each

stabilizer of Cqubit, one defines a stabilizer of CMajorana by replacing an operator X on a qubit by

iγ0γ1, Y by iγ0γ2, and Z by iγ0γ3. The stabilizer generators of CMajorana are given by bit strings

of length 4n such that the dot product over F2 of any pair of such bit strings is 0. Thus, from

CMajorana, one can define a weakly self-dual CSS code Cwsd with 4n physical qubits, 2k logical

qubits and distance 2d. Since a randomized construction (see, for example, Eq. 7.200 of Ref. 38)

gives stabilizer codes Cqubit with k/n→ 1−H2(d/n)− (d/n) log2(3), mapping these stabilizer codes

Cqubit to weakly-self dual codes Cwsd gives k/n→ (1/2)[1−H2(2d/n)− (2d/n) log2(3)]. Since the

randomized construction gives a lower bound to the weight of any operator commuting with the

stabilizer group, we can puncture these codes and reduce the distance by at most 1.

Here we give another proof of the existence of such good weakly self dual-codes. This will

lead to rate k/n → 1− 2H2(d/n). For any fixed distance d, one can obtain families of stabilizer

codes with n physical qubits and k logical qubits with the ratio k/n → 1 as n →∞. While this

improvement is only by constant factors over the construction via Majorana codes, it will lead to

nice asymptotic expressions for the number of T -gates, nT , required to attain d-th order suppression

in error. It is also a randomized construction, showing that codes in a certain ensemble have the

desired properties with high probability.

Define a random ensemble of c-by-n self-orthogonal matrices as follows, where a matrix M is

defined to be self-orthogonal if MMT = 0. Choose the first row of the matrix to be the all 1s vector
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~1. Choose the second row uniformly at random subject to the constraint that it have vanishing dot

product with the first row. Continue in this fashion, choosing the j-th row uniformly at random

subject to the constraint that it have vanishing dot product with the first j − 1 rows. (Remark: the

requirement that the first row be the all 1s vector is simply chosen to simplify some notation, so

that we do not need to add the requirement that each row have even weight.)

Lemma IV.9. Consider a fixed n-component vector v, with v 6= 0 and v 6= ~1. For a random c-by-n

self-orthogonal M , the probability that Mv = 0 is at most 2−c+1 + 2−n+c+1.

Proof. Let w1, . . . , wc be the rows of M . Let Vj be the self-orthogonal subspace which is the span

of the first j rows of M . We will estimate the desired probability by a union bound, considering

separately the event that v ∈ V ⊥c and v 6∈ Vc, and the event that v ∈ V ⊥c and v ∈ Vc.
Consider the first event. Let j > 1. Then

Pr[wj · v = 0|v 6∈ Vj−1] =
1

2
, (IV.5)

because the constraint that (v, wj) = 0 is independent of the constraints on the vector wj . Thus,

for any k,

Pr[v ∈ V ⊥k and v 6∈ Vk] ≤
k∏
j=2

1

2
= 2−k+1. (IV.6)

For k = c, we find in particular that

Pr[v ∈ V ⊥c and v 6∈ Vc] ≤ 2−c+1. (IV.7)

Now we estimate the probability of the second event. Note that if v ∈ Vc, there is a least j such

that v ∈ Vj . So,

Pr[v ∈ V ⊥c and v ∈ Vc] ≤
c∑
j=2

Pr[v ∈ Vj and v ∈ V ⊥j−1 and v 6∈ Vj−1]. (IV.8)

We have

Pr[v ∈ Vj and v ∈ V ⊥j−1 and v 6∈ Vj−1]

= Pr[v ∈ V ⊥j−1 and v 6∈ Vj−1] · Pr[v ∈ Vj | v ∈ V ⊥j−1 and v 6∈ Vj−1]

≤ 2−j+2 Pr[v ∈ Vj | v ∈ V ⊥j−1 and v 6∈ Vj−1], (IV.9)

where we used Eq. (IV.6).

Now we estimate the probability Pr[v ∈ Vj | v ∈ V ⊥j−1 and v 6∈ Vj−1]. This is possibly nonzero

only if v · v = 0. Consider the space of all n-component vectors modulo vectors in Vj−1; this



21

quotient space has dimension at least n − (j − 1). Let π be the natural map from the space

of all vectors to this quotient space. The vector πv is nonzero by assumption. The vector wj

is subject to at most j − 1 independent constraints from Vj−1. Consider the space of possible

πwj , given that wj obeys those constraints; this space has dimension at least n− 2(j − 1) and so

the probability that a random vector in this space is equal to πv is at most 2−(n−2j+2). Hence,

Pr[v ∈ Vj | v ∈ V ⊥j−1 and v /∈ Vj−1] ≤ 2−(n−2j+2), so Pr[v ∈ Vj and v ∈ V ⊥j−1 and v /∈ Vj−1] ≤ 2−n+j .

So by Eq. (IV.8),

Pr[v ∈ V ⊥c and v ∈ Vc] ≤
c∑
j=2

2−n+j ≤ 2−n+c+1. (IV.10)

By a union bound, adding probabilities in Eqs. (IV.7,IV.10), the lemma follows.

Lemma IV.10. Let n, c, d be such that

(2−n+c+1 + 2−c+1)
d∑

w=1

(
n

w

)
< 1. (IV.11)

Then, there exists a c-by-n matrix M such that MMT = 0 and such that Mv 6= 0 for any v 6= 0

with v having Hamming weight at most d.

Proof. This follows from Lemma IV.9 and by a first moment bound. For a random M from the

above ensemble, the expected number of vectors v 6= 0 with Hamming weight at most d such that

Mv = 0 is at most (
∑d

w=1

(
n
w

)
) · (2−n+c+1 + 2−c+1).

Lemma IV.11. For any fixed d, one can find a family of M with increasing n such that the ratio

c/n tends asymptotically to zero and such that Eq. (IV.11) is obeyed. Hence, for any distance

d, one can find a family of hyperbolic or normal weakly self-dual CSS codes such that the ratio

kinner/ninner → 1 as ninner →∞.

Proof. Immediate for the hyperbolic case. Since the lemma IV.9 upper bounds the probability

that an operator commutes with the stabilizer group one can also puncture these codes to obtain a

normal code.

C. Outer Codes

In this subsection, we construct families of outer codes with good check rate and sensitivity.

We begin with a randomized construction, and then show how to construct explicit families using

previous results in coding theory.
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Lemma IV.12. There exist families of outer codes with good check rate and sensitivity and even

row weight. Similarly, there exist families of outer codes with good check rate and sensitivity and

odd row weight.

Proof. We only give a proof for check matrices of even row weight. The proof for odd row weight

case is completely analogous.

Consider a random m-by-nouter parity check matrix M . Let d̃ = nouter − 1. Choose each row

independently but with the constraint that it should be of even weight. For any vector v with

|v| ≤ d̃, the syndrome vector Mv has independent entries from the uniform distribution. Thus, the

probability that |Mv| ≤ s for s ≤ m/2 is bounded by

2−m
∑
i≤s

(
m

i

)
= O∗(2m(H(s/m)−1)),

where H(p) = −p log2(p)−(1−p) log2(1−p) is the binary entropy function, and O∗ hides polynomial

factors. The number of such vectors v is bounded by 2nouter . By a union bound, the probability

that there is an error vector v of weight less than d̃ such that the syndrome has weight less than s

is bounded by

O∗(2m(H(s/m)−1))2nouter = O∗(2nouter(1+(m/nouter)(H(s/m)−1))).

For sufficiently large ratio m/nouter and sufficiently small ratio s/m, this quantity is exponentially

small in nouter.

The above randomized construction is very similar to randomized constructions of classical codes

with good rate and distance, where we define

Definition IV.13. A family of classical error correcting codes with increasing number of bits n

has good rate if the number of encoded bits k is Θ(n) and has good distance if the distance d is

Θ(n).

That is, even though we are considering very different properties (number of violated checks

rather than distance of the code), the first moment argument above is very similar to standard

first moment arguments to construct such codes with good rate and distance, with some additional

technicalities required to ensure even weight of the parity checks. This is not a coincidence. As we

now show, given a family of codes with good rate and distance, one can construct a family of codes

with good check rate and sensitivity.
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Lemma IV.14. Let C be a classical error correcting code that encodes k bit messages into n bit

codewords. Let C have distance d. Let v1, . . . , vk be a basis for the codewords of C. Let M be the

n-by-(k + 1) matrix whose columns are the vectors v1, . . . , vk, w where w = v1 + . . .+ vk. Then, all

rows of M have even weight and M is a parity check matrix for a code with nouter = k + 1 bits

which is (d̃, s) sensitive with s = d and d̃ = nouter − 1. Thus, the code with parity checks encoded by

M has only two codewords (the all 0 vector and the all 1 vector) and any message which is not a

codeword will violate at least d checks.

Proof. For any (k + 1)-bit vector v, the vector Mv is a codeword of C. If v is nonzero and is not

equal to the all 1 vector, then Mv is a nonzero codeword of C and hence has weight at least d.

Since nouter = k + 1, in order to obtain an even nouter, if C has k even, we can simply define a

new code C ′ which encodes k−1 bit messages into n bit codewords by using any (k−1)-dimensional

subspace of the codewords of C, in this way obtaining a parity check matrix for a code with

nouter = k − 1 + 1 = k.

Using lemma IV.14, we can construct explicit families of codes with good check rate and good

sensitivity given any explicit family of codes with good rate and good distance. As an example of

such a code family, we can use the expander codes of Ref. 39.

Lemma IV.15. Given integers d̃, w ≥ 1 and s ≥ 2, there exists an m× nouter parity check matrix

M that is (d̃, s)-sensitive where m = nouter · s/w and every row of M has weight w exactly.

Proof. A parity check matrix M defines a bipartite graph G, often called a Tanner graph. One set

of vertices of the graph (which we call B labeled by the columns of M) corresponds to bits of the

code and the other set (which we call C labeled by the rows of M) corresponds to checks, with an

edge between a pair of vertices if M is nonzero in the corresponding entry. Equivalently, given such

a bipartite graph G, this defines a parity check matrix. We claim that given a bipartite graph with

all vertices in B having degree s and all vertices in C having degree w and with girth > 2d̃, the

corresponding parity check matrix defines a code with the desired properties. Once we have shown

this, the lemma follows, since Ref. 40 shows the existence of such graphs.

Note first that the degree of vertices in C corresponds to the row weight of M . Next, note

that if all vertices in C have degree w and all in B have degree s, then m = |C| = nouter
s
w with

nouter = |B|.
To prove the claim, let V ⊆ B be a nonempty set of erroneous bits. By assumption, 1 ≤ |V | ≤ d̃.

Consider a subgraph H of G defined by all vertices of V and its neighbors. By the girth condition
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on G, the subgraph H has to be a collection of disjoint trees. Thus, it suffices to prove the claim in

case where H is connected. If |V | = 1, then the error violates s checks, and we are done. If |V | ≥ 2,

let v1, v2 ∈ V be a pair that are the furthest apart. The choice of the pair ensures that each of v1

and v2 has s− 1 leaves attached to it. Therefore, V violates at least 2s− 2 ≥ s checks.

Note that the ratio m/nouter = s/w in lemma IV.15 is the best possible, because each bit must

participate in at least s checks (i.e., every column of the parity check matrix must have weight at

least s). Note also that though the existence of desired graphs is guaranteed, they might be too

large in practice; ws ≤ nouter ≤ poly(ws) [40]. However, one does not have to be too strict on the

biregularity of the graph in practice. If small violation of the biregularity gives a much smaller

graph, then it might be more useful.

V. NUMERICAL SIMULATION

In this section, we give results of numerical simulations. We begin by explaining the error model

we used for simulations. We then explain two protocols that we simulate that are not explained

previously; one of these protocols uses a [[21, 3, 5]] code. Then we give the simulation results. One

interesting result of the simulation is how little effect the subleading terms have, even at fairly large

noise values.

A. Magic state fidelity

When we inject a magic state µ for a π/4 rotation into a quantum circuit, there is a probability

for correction K by angle π/2 to be applied. If we represent the overall procedure by a quantum

channel Cµ, it is Cµ(ρ) = Π+(ρ⊗ µ)Π+ +KΠ−(ρ⊗ µ)Π−K
†, where Π± denotes the measurement

combined with a control-Pauli on the magic state and a target data qubit. Let |µ0〉 be the ideal

magic state, and |µ⊥0 〉 be the orthogonal state. Then, it is straightforward to calculate that

C|µ0〉〈µ⊥0 |+|µ⊥0 〉〈µ0|(ρ) = 0.

This implies that for any initial approximate magic state µ, the result of the injection is the

same as if µ had been through a twirling channel E that dephases the magic state in the basis

{|µ0〉 , |µ⊥0 〉}:

µ =

1− ε ∗
∗ ε

 E−−−−−→

1− ε 0

0 ε

 . (V.1)
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The twirled state is ε away from the ideal state in the trace distance,7 resulting in error at most ε

to the quantum circuit’s outcome. The error ε can be expressed by the squared fidelity8 as

1− ε = F 2(µ0, µ) = 〈µ0|µ |µ0〉 = 〈µ0| E(µ) |µ0〉 . (V.2)

This formula is convenient in that it yields the same answer regardless of whether or not twirling is

applied to µ (this is the last equality in the above formula). When a state µn that approximates

µ⊗n0 is injected, the error from this multi-qubit magic state is given by 1− F 2(µ⊗n0 , µn). Note that

F 2(µ0, µ) is linear in µ. Below, we use 1− F 2 as the probability of error to report our simulation

results.

B. Error Models

The typical model to analyze distillation protocols is the stochastic error model. In typical

distillation protocols, one has only a single output magic state, and so one is interested in the

probability that the output magic state has an error as a function of the input, conditioned on

no error being detected by the code; the error probability is a ratio of polynomials in ε, with the

leading term being of order εd for some d, with an integer coefficient.

For our purposes, since the codes used are fairly large, enumeration of all possible error patterns

becomes difficult, especially if one wishes to go beyond leading order in ε. For this reason, we use

numerical simulation. One could simulate a mixed state, using a quantum channel to describe an

approximate T -gate; however, this is numerically prohibitive and so we prefer to use an approach

that involves only pure states. One could numerically simulate pure states using the stochastic error

model by choosing errors to occur with probability p, and sampling the output error probability.

However, this simulation also becomes difficult, precisely because the codes lead to a high suppression

in the error. For example, if the target error probability is 10−10, one would require ∼ 1010 samples,

with a fairly large number of qubits needed to be simulated in each run, to determine the output

error probability accurately.

While there may be ways to overcome this sampling issue using importance sampling, we use

another method. Instead of rotating by either π/4 or by 5π/4 as in the stochastic error model, each

T gate rotates by an angle chosen uniformly in the interval [π/4− θ, π/4 + θ], for some angle θ > 0.

Then, conditioned on the code not detecting an error, we determine the error in the output state.

7 The trace distance is defined as T (ρ, σ) = 1
2
‖ρ− σ‖1.

8 The fidelity is defined as F (ρ, σ) = ‖√ρ
√
σ‖1, which is equal to | 〈ρ|σ〉 | for pure ρ and σ.
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In fact, the model with input angles [π/4− θ, π/4 + θ] and the stochastic error model describe

the same average input state, assuming an appropriate choice of ε and θ.

µ =
1

2θ

∫
[−θ,+θ]

dx

 cos2 x2 sin x
2 cos x2

sin x
2 cos x2 sin2 x

2


︸ ︷︷ ︸

ρx

= (1− ε)

1 0

0 0


︸ ︷︷ ︸

µ0

+ε

0 0

0 1


︸ ︷︷ ︸

µ1

1

2
− sin θ

2θ
= ε (V.3)

Hence, one wants ε ≈ θ2/12. (We emphasize that this is in a notation where θ is the rotation angle

in the Bloch sphere; the T -gate is a rotation by π/4, not by π/8.) In the stochastic error model

with small ε, one must do roughly 1/ε runs to obtain meaningful statistics, while here, one needs

only a constant number of runs. The reason is as follows. Since θ is small, the simulated circuit can

be approximated by an analytic series in θ, and the linear term amounts to a single error, which is

projected out by the post-selection on measurement outcomes as our protocol always has d ≥ 2.

Thus, in our post-selected simulation, a circuit with ρx∈[−θ,θ] is equivalent at leading order to a

circuit with ρ′x where ρ′x is ρx with the linear term in x dropped. Then, the distance from n-sample

average of ρ′x to µ is O(ε/
√
n), whereas the distance from n-sample average of µi (i = 0, 1) to µ is

O(
√
ε/n). The acceptance probability depends on the fidelity to the ideal magic state µ0, which is

1−O(ε) = 1−O(θ2) in any case.

C. Other Protocols

1. [[16, 2, 4]] Inner Code

In subsubsection I B 2 we explained a protocol using a [[16, 6, 4]] inner code. This required using

a total of 17 physical qubits, namely 16 for the code and one ancilla. We can also modify this

inner code to a [[16, 2, 4]] inner code, by turning some of the logical operators into checks. This

inner code suffices to implement the H-measurements on pairs of states (23), (45), (61) and so it

can implement the checks of the outer code used in subsubsection I B 2. Using a [[16, 2, 4]] inner

code, if we want to have nouter = 6, we need a total of 21 physical qubits, since we need 16 for the

code, plus 4 for the logical qubits not encoded in the code, plus one ancilla. Thus, this requires

additional physical qubits compared to the [[16, 6, 4]] code. The reason for considering the [[16, 2, 4]]

code in numerics is to see if it reduces the prefactor in the error, since the [[16, 2, 4]] code has fewer

logical operators than the [[16, 6, 4]] code. The number of T gates in the protocol using [[16, 2, 4]] is

the same as that using [[16, 6, 4]]. We pipeline the protocol with the [[16, 2, 4]] inner code in the
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same way as we did with the [[16, 6, 4]] inner code. See Fig. B.3 in Appendix B.

2. [[21, 3, 5]] Inner Code

Another inner code that we used is a [[21, 3, 5]] inner code, described in Appendix A. This allows

us to obtain fifth order reduction in error. We used nouter = 4 with the outer code having check

matrix

M =


1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

 . (V.4)

It uses 4 checks for 4 qubits. This matrix is not (4, 2)-sensitive, but is sufficient to achieve fifth

order reduction in error since 2|Mv| + |v| ≥ 5 for every nonzero v. This protocol consumes

4 + 4× (21× 2) = 172 T ’s to produce 4 outputs T states. See Fig. B.4 in Appendix B.

A simple pipelining can reduce the noisy T gate count compared to this protocol. Distill three

independent magic states using [[7, 1, 3]] inner code. (The outer code is trivial in this case.) The

three distilled magic states is then pipelined into the [[21, 3, 5]] inner code. This produces 3 magic

states with error O(ε5), consuming, per output, 28 T gates and one T state with error ε.

Without the pipelining in the preceding paragraph, but using weight 3 checks from [[21, 3, 5]], we

can find an outer code that is (4, 2) sensitive using (2/3)nouter checks. This produces nouter magic

states with fifth order error suppression, consuming 42 · 2/3 = 28 T gates and one T state, per

output. The smallest such outer code is explained in the appendix, where it is called the Petersen

graph code. For this outer code, nouter = 15, so the overall protocol consumes 435 T ’s to produce

15 outputs. It is possible to further reduce the number of input T ’s, by replacing some of the early

checks with a smaller code e.g. [[15, 7, 3]] code, which can be obtained by puncturing [[16, 6, 4]]

code.

3. [[23, 1, 7]] Inner Code

In the appendix, we give a [[23, 1, 7]] inner code. Pipelining this code with a [[7, 1, 3]] and a

[[17, 1, 5]] inner code gives us nouter = 1 with error O(ε7). This protocol consumes 1 + 7× 2 + 17×
2 + 23× 2 = 95 T ’s, to produce 1 output magic state. We could also apply this code to each of the
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1.E-32

1.E-30

1.E-28

1.E-26

1.E-24

1.E-22

1.E-20

1.E-18

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E-051.E-041.E-031.E-021.E-01

4

7

15

16

17

20

21

22

23

𝝐𝒊𝒏

𝝐 𝒐
𝒖
𝒕

Protocol d nT /nouter nouter Prefactor

“4” 2 9 2 45× 100

“7” 3 15 1 35× 100

“15” 3 15 1 35× 100

“16” 4 41 6 7.3× 103

“17” 5 49 1 1.4× 103

“20” 4 41 6 3.9× 103

“21” 5 29 3 2.5× 103

“22” 5 43 4 1.4× 103

“23” 7 95 1 49× 103

FIG. V.1. Results of numerical simulations. εin represents input error; this is the error ε of Eq. (V.3) for

the given θ. εout is the average of 1− 〈µ0|µ |µ0〉 over runs. The fitting function is εout = Cεdin. The graph

confirms that the leading term dominates the output error probability in the simulated regime. The numbers

labelling curves indicate the number of physical qubits, not including the ancilla qubit. Specifically, “4”

indicates protocol using [[4, 2, 2]] inner code. (We did not compress the circuit as Ref. [11] did.) “7” indicates

protocol using [[7, 1, 3]] inner code. “15” is the Bravyi-Kitaev 15-to-1 protocol included for comparison

purposes; “7” and “15” have almost identical performance. “16” is pipelined protocol using [[16, 6, 4]] inner

code. “20” is pipelined protocol using [[16, 2, 4]] inner code. “17” is pipelined protocol using [[17, 1, 5]] inner

code. “22” is protocol using [[21, 3, 5]] inner code with nouter = 4. “21” is protocol using [[21, 3, 5]] inner code

pipelined with [[7, 1, 3]] inner code. “23” is protocol using [[23, 1, 7]] inner code pipelined with “21.”

output bits of any of the other fifth order protocols of section V C 2 to obtain error O(ε7); we do

not show results for this here.
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D. Results

The results of the simulations are shown in Fig. V.1. Note that the plots are close to linear

on a log-log plot, with only small deviations at high error rate. Each data point represents the

average of at least 104 runs, with statistical flucutations negligible on the scale of the plot. The

asymptotic behavior is within statistical error of that given by an enumeration of minimum weight

error patterns.

The protocol using [[16, 2, 4]] inner code has a slightly reduced output error, compared to the

protocol using the [[16, 6, 4]] inner code.

We emphasize that εout indicates the probability that there is any error in the output state which

is a multi-qubit state. Suppose that two protocols give the same value of εout for a given εin, but

one protocol has a large nouter. If the total number of magic states needed in our computation is

large compared to nouter, the number of times we need to call the protocol is inversely proportional

to nouter, and so the protocol with the larger nouter for the given εout is less likely to produce an

error.

The probability that no error is detected by the protocol is roughly (1 − εin)nT . This result

would be exact if any error in an input T gate led to the protocol detecting an error. Instead,

some high weight error patterns do not lead to any error detected by the code, leading to slight

corrections to this formula.

VI. DISCUSSION

We have given a general scheme to construct distillation protocols using inner and outer codes. If

desired, our protocols can be concatenated with other protocols. However, on their own, they achieve

asymptotic behavior which is conjectured to be optimal, as well as having small size examples

which perform well. The concatenation can be useful in an architecture where Clifford gates are

performed at a logical level so that one can tune the fidelity of Clifford gates to match the relatively

low fidelity of output magic states from early stages of concatenation [41–43]. In contrast, our

schemes without concatenation can be useful if Clifford gates are already of high fidelity.

One of the major advantages of our protocols is the small number of qubits that they use, as

they maintain a constant ratio of physical to logical qubits in the asymptotic limit. It is interesting

to consider the asymptotics of this overhead between physical and logical qubits. Note that given

any distillation protocol, there is a trivial way to define a new protocol with a fixed ratio of physical
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to logical qubits. Suppose, for example, that some protocol uses nphys qubits to produce 1 output

magic state. Here nphys includes all physical qubits used in the protocol, not only initial noisy T

states. Call this protocol P . One can define a new protocol P ′ that works on 2nphys qubits to

produce nphys output magic states: First, by working on nphys qubits, leaving other nphys inactive,

we obtain 1 output, which is put away. Next, we use nphys qubits out of 2nphys − 1 qubits to obtain

the second output, which is put away. Next, we use nphys qubits out of 2nphys − 2 qubits to obtain

the third output, which is put away. Continuing, we apply P a total of nphys times sequentially.

However, the circuit depth of P ′ now is proportional to nphys times the depth of P .

In contrast, in Theorem IV.1, we obtain d-th order error reduction at fixed ratio of physical to

logical with a T -gate depth proportional to d. That is, the protocols we have constructed are space

and time efficient in terms of T -gates. It should be noted that we have ignored all Clifford gates,

and thus the T -efficiency claim is meaningful when T -gates are much more costly than Clifford

gates.9

Jones [13] constructed a family of protocols giving γ → 1. (For the definition of γ, see the

discussion below Theorem IV.1.) This protocol builds upon Knill’s [8], and is in fact a subclass

of ours. Implicitly in Ref. [13], the inner code is obtained by concatenating a [[k + 4, k, 2]] code

ν times where k is even, yielding [[kν + 4(kν − 1)/(k − 1), kν , 2ν ]] normal weakly self-dual codes.

(For the definition of normal and hyperbolic codes, see III.) The outer code is a hypercubic grid

with checks along coordinate axes. The dimension of the grid is proportional to ν · 2ν , since a check

using an inner code of distance 2ν has to be implemented 2ν−1 times along 2ν−1 independent axes,

and the concatenation for the inner codes is also performed on a grid. For a given ν, in the large k

limit, one obtains a protocol that consumes 2ν + 1 = d+ 1 noisy T gates per output at d-th order

of reduction in error. The asymptotic performance of this family is similar to our Theorem IV.2. If

we worked with normal codes of even distance in Theorem IV.2, then we would have concluded

that the input T count per output is d+ 1. Note that the space requirement of Jones’ scheme is

much larger than that of Theorem IV.1, as the grid outer code used by Jones would require roughly

kν2
ν

= kO(d) qubits. This exponential dependence on d also holds for the protocols in the proof of

Theorem IV.2. In contrast, Theorem IV.1 requires only O(d) qubits.

In comparison with Jones’ scheme, our main technical contribution is to explicitly separate inner

and outer codes with general criteria for them to be useful in distillation. The criteria are that inner

9 Including Clifford gates, the entire circuit of Theorem IV.1 has depth O(d2 log d) if geometric locality of the gate

is ignored. Indeed, an n-qubit stabilizer code’s encoding circuit can be constructed in depth O(n logn). It is

essentially Gauss elimination of a binary symplectic matrix. The Gauss elimination for a single column can be done

by a circuit of depth O(logn), and hence the entire Gauss elimination can be done by a circuit of depth O(n logn).

Since we are using a good family of codes, the circuit depth of an encoding circuit is O(d log d), and there are O(d)

encoding/decoding steps. The total gate count (spacetime) per output is O(d2 log d).
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codes have to be weakly self-dual, and outer codes have to be sensitive (i.e., the parity check matrix

M should satisfy 2|Mv|+ |v| ≥ d for any nonzero error vector v). These requirements are rather

simple, so we were able to consider random constructions for them. In fact, a large pool of existing

codes can be incorporated. In particular, we note that there are quantum BCH codes [44], some of

which have encoding rate greater than 1/2 with code distances 5 and 7 at modest code lengths.

For Theorem IV.2 we have resorted to a graph theoretic construction of outer codes from

Ref. [40]. This is sufficient for the proof, but one may wish to have more concrete examples. In fact,

a hypercubic grid of dimension D ≥ 3 yields an outer code of desired sensitivity for d = 2D + 1,

which will be analyzed in detail elsewhere [45].

Appendix A: Specific Small Inner and Outer Codes

In this appendix, we give some specific inner and outer codes, either giving the stabilizers or

referring to the literature. Some of these codes are explained in the basic distillation section I or in

numerical simulations V in the body of the paper. Other codes have other useful properties that we

describe for specific codes.

When we give stabilizers for an inner code, each row gives one stabilizer generator. Each row

consists of a binary string, of length equal to the number of qubits, with a 1 indicating that that

stabilizer acts on that qubit, i.e., we give the parity check matrix.

1. Inner Codes

a. [[4, 2, 2]] Inner Code

This is explained in Section I.

b. [[16, 6, 4]] Inner Code

This is from Ref. 46. The stabilizer matrix is the classical Hadamard code [16, 5, 8].

1111111111111111

1111111100000000

1111000011110000

1100110011001100

1010101010101010
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c. [[7, 1, 3]] Inner Code

This is explained in Section I.

d. [[17, 1, 5]] Inner Code

This is an instance of color code [21, 31]. It is the smallest normal code that we found with

kinner = 1 and distance 5. The stabilizers are:

11011010101000010

01100011001100110

00110110010011001

00010101000111110

00001110010011101

00000101000110000

00000011111011010

00000001010100001

e. [[21, 3, 5]] and [[23, 1, 7]] Inner Codes

The (extended) Golay code is a classical self-dual code which has parameters [24, 12, 8]. Punc-

turing a bit by collecting all code words that has zero on that bit, we obtain a self-orthogonal

[23, 11, 7]. From this, we obtain a weakly self-dual CSS code which is [[23, 1, 7]]. (Reichardt has

used this code in a very different distillation protocol [29].) There are many positions to puncture,

but due to high symmetry of the Golay code, the resulting codes have the same weight enumerators.

One can pipeline the [[23, 1, 7]] code after the protocol of section I A 2 to give a protocol with one

output magic state and seventh order suppression in error.

By puncturing the [[23, 1, 7]] code twice, we obtain a [[21, 3, 5]] code. In a numerical search, we

did not find any smaller normal code with kinner = 3 and distance 5. The stabilizers of the [[21, 3, 5]]

code are:
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ninner 16 20 24 28 30 20 28 30

kinner 6 8 12 14 16 2 4 6

d 4 4 4 4 4 6 6 6

TABLE A.1. Parameters of small hyperbolic weakly self-dual CSS codes [46]. The code [[20, 2, 6]] can be

constructed from the five-qubit code [[5, 1, 3]] by going through the Majorana operators [35], while the others

cannot be constructed in this way.

100000000011110110100

010000000001111011010

001000000110110011001

000100000011011001101

000010000001101100111

000001000110111000110

000000100101010010111

000000010100100111110

000000001100011101011

f. Other Inner Codes

Some other examples of inner codes can be found in Ref. [46], from which we reproduce optimal

kinner found for given distance and ninner in Table A.1. For stabilizers, see Ref. [46].

2. Outer Codes

a. Petersen Graph Code

The outer code in section V C 2 has 4 qubits uses 4 checks of weight 3. However, from

Lemma IV.15, we know that there is some nouter such that there is a code which is (4, 2) sensitive

with weight-3 checks, which has only (2/3)nouter checks. We now explain this code. The proof of

Lemma IV.15 reduces the problem of finding such a code to finding a bipartite graph G. Since the

set B of that lemma has degree 2, we can equivalently define the code by a graph H such that the

vertices of the graph H correspond to checks and the edges correspond to bits; i.e., in the case that

B has degree 2, the possible bipartite graphs G are in one-to-one correspondence with degree-3

graphs H. Then, from the proof of Lemma IV.15 we know that if H has girth at least 5, then
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H
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FIG. B.1. Pipelined circuit using [[16, 6, 4]] code described in section I B 2.

the corresponding code is (4, 2) sensitive. The smallest such graph H is known to be the Petersen

graph. This is a degree-3 graph with 15 vertices and 10 edges. This graph can be thought of as the

dodecahedron with antipodes identified. Note that the girth being 5 is optimal in this case, because

if H has girth 4, then there is a weight 4 error that violates no checks.

Appendix B: Circuits

In this section we give circuits for some of the protocols above. Boxes labelled Enc or Enc′

denote encoding and decoding circuits, which are Cliffords. The number in the box indicates what

code is used. H denotes Haamard, M denotes measurement in Z basis, JMx denotes measurement

in X basis, Czs denotes control-Z operations.
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|0〉

H JMX.

Init7 Unit7

Enc17 |−T 〉 CZs |T 〉 Enc17′
M

FIG. B.2. Pipelined circuit using [[17, 1, 5]] code described in section I A 2.
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FIG. B.3. Pipelined circuit using [[16, 2, 4]] code described in section V C 1.
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FIG. B.4. Circuit using [[21, 3, 5]] code described in section V C 2
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Appendix C: Coincidence among protocols

The Steane code has 7 Y -logical operators of weight 3. In the distillation protocol using the

Steane code as the inner code, each logical error may appear in 4 different ways in the column that

implements control-H⊗7 [8]. The measurement error at the lowest order can happen in 7 ways.

Overall, the cubic error can happen in 7 · 4 + 7 = 35 ways. This number matches the number of

logical operators of weight 3 in the Bravyi-Kitaev 15-to-1 protocol [10]. Reichardt [29] has noted

this equivalence.

When we pipelined [[7, 1, 3]] to [[17, 1, 5]], there are 48 T gates and 1 T states. The number of

logical operators of weight 5 in [[17, 1, 5]] is 51. Each logical operator can appear in 16 different

configurations in the column that implements control-H⊗17. The measurement error from the

17-qubit code routine occurs in 17 ways at the leading order. Thus, the output error probability

has leading term (51 · 16 + 35 · 17)ε5 = 1411ε5. The coefficient matches the number of Z-logical

operators of weight 5 in the [[49, 1, 5]] code, as reported in [12, App. B].

Bravyi and Cross [21] gave a recursive construction for triply even codes. They showed how to

convert a pair of a (classical) triply even code of length nt−1 with dual distance 2t− 1 and some

(classical) self-orthogonal code of length mt with dual distance 2t + 1 into a triply even code of

length nt = 2mt + nt−1 with dual distance 2t+ 1. The formula gives another coincidence with our

pipeline. nt−1 is the number of T gates/states, sitting before the final H-measurement routine in

the pipeline, and mt is the code length of the final H-measurement routine. Thus, the recursive

formula nt = 2mt + nt−1 correctly counts the number of T gates/states used in the pipeline.

A similar coincidence was observed by Jones [13], where the leading error probabilities of the

distillation protocols by a family of weakly self-dual [[k + 4, k, 2]] codes with (k, 0)-magic basis and

those by a family of triorthogonal codes [12] are shown to be the same as (3k + 1)ε2. The total

number of T gates/states were also the same as 3k + 8.

Appendix D: Qudits

In this section, we consider an extension to qudits with local Hilbert space dimension p > 2, with

p a prime. Previously, Reed-Muller codes over prime fields were used [47, 48], but our approach is

more efficient. In terms of the scaling exponent γ (see Sec. IV), previous schemes for a fixed p did not

achieve γ → 1, whereas our protocols below will.10 Specifically, we consider outer codes defined by

10 In Ref. [48], it is shown that γ can be arbitrary close to 1 in the limit of large p.
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binary parity check matrices M that are sensitive enough. Those from biregular bipartite graph can

be used. The parity check matrices being binary is for technical simplicity, and is not conceptually

crucial ingredient, though relaxing this condition might involve complicated calculation. The main

difference from the qubit protocols is in inner codes. We only consider analogs of normal codes,

where transversal S gates become logical S gates. We show that measurement in the eigenbasis of

SX can be implemented fault-tolerantly on an inner code of parameters [[ninner, kinner, d]]p using

4ninner T gates if p > 3, or 2ninner T gates if p = 3. Therefore, the Lemma IV.4 generalizes to

odd prime dimensional qudits, where input T count is nouter + 4ninnerm if p > 3 where m is the

number of checks in the outer code, or nouter + 2ninnerm if p = 3. We complement the construction

in this section with a probabilistic existence proof for a good family of inner codes in the sense of

Section IV; see Lemma E.4 and combine it with the proof of Lemma IV.10. We also point out that

quantum Reed-Muller code gives a family whose encoding rate approaches 1 for a given distance.

Hence, the statement of Theorem IV.1 remains unchanged in either case where p = 3 or p > 3, but

that of Theorem IV.2 for p > 3 becomes that, for odd d ≥ 5 the number of input magic states per

output approaches 1 + 4(d− 1)/2 = 2d− 1 in the large code length limit. The input T count per

output is still d(1 + o(1)) if p = 3. If one wishes to improve the asymptotic input count for p > 3,

then one has to solve an equation analogous to (D.19).

Consider a basis of states |j〉, where j = 0, 1, . . . , p− 1 is periodic mod p. We use the following

operators and phase factor

ω = e2πi/p, Z =
∑
j

ωj |j〉 〈j| , X =
∑
j

|j + 1〉 〈j| ,

H =
1√
p

∑
j,k

ωjk |j〉 〈k| , S =
∑
j

ωj(j−1)/2 |j〉 〈j| , CX =
∑
j

|j〉 〈j| ⊗Xj ,

U(n) =
∑
j

|nj〉 〈j| (n 6= 0) (D.1)

which generate the Clifford group. It holds that ZX = ωXZ.

We will work with a generalization of normal codes throughout this section, ignoring hyperbolic

codes. One reason is that we cannot achieve control-Swap in the same way as we could previously.

The general method in the qubit case was to use some non-Clifford operation such as a T gate,

conjugating controlled Pauli to obtain control-Swap on the code space of some code. However,

Swap is of order 2 while control-Z is of order p. One might hope to obtain a control-permutation of

order p, but we do not consider this possibility. For normal codes, we do not try to implement the

control-Hadamard as was done before, because Hadamard is of order 4 for p > 2, and hence is not

conjugate to control-Z.
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1. Preliminary

Let us first define a T -gate [47]. The cases p = 3 and p > 3 are going to be different. Define

g(j) :=

j∑
k=0

1

2
k(k − 1) =

1

6
(j3 − j), (D.2)

g(j + p) = g(j) mod p if p > 3 (D.3)

where the second line is because 6 is invertible in Fp>3, and ensures that g is a well defined function

on Fp>3. All arithmetic in the exponent of ω, Z, X, and S will be over Fp for both p = 3 and p > 3.

Define the T -gate as

T =

p−1∑
j=0

ωg(j) |j〉 〈j| , TXT−1X−1 = S if p > 3, (D.4)

T = |0〉 〈0|+ e−2πi/9 |1〉 〈1|+ e2πi/9 |2〉 〈2| , TXT−1X−1 = e−2πi/9S if p = 3. (D.5)

These show that in both cases the T gate is at the third level of the generalized Clifford hierarchy.

More generally, we find

TmXT−m =


SmX for p > 3,

e−2πim/9SmX for p = 3.

(D.6)

For both p = 3 and p > 3, define |ψm〉 for m = 0, 1, . . . , p− 1 be the (+1)-eigenstate of TmXT−m:

TmXT−m |ψm〉 = |ψm〉 . (D.7)

Any state |ψm〉 for m = 1, . . . , p− 1 will be a “magic state.”

How would one use these magic states? Suppose p > 3. Consider a pair of qudits in a state∑
j aj |j〉 ⊗ |ψm〉. Apply a control-X operation with the first qudit as source and the second qudit

as target. This maps the state to

1√
p

∑
j,k

ajω
mg(k) |j, k + j〉 . (D.8)

Now measure the second qudit in the computational basis, obtaining a result `. This gives a state

on the first qudit
∑

j ajω
mg(`−j) |j〉. Thus, the transformation implemented on the first qudit is∑

j ω
mg(`−j) |j〉 〈j|. Expanding the exponent, we have

mg(`− j) = mg(`)−mg(j) +
m

2
(`j2 − `2j) (D.9)

= mg(`)−mg(j) +m`
j(j − 1)

2
−m`(`− 1)

2
j.
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The first term on the right-hand side of Eq. (D.9) corresponds to an irrelevant global phase factor.

The second term, −mg(j), corresponding to implementing transformation T−m on the first qudit.

The third term gives a phase factor that can be corrected by applying a power of the S gate and

the last term gives phase factors that can be corrected by a power of the Z gate. Thus, the state

injection procedure works, in that we can use a magic state |ψm〉 to produce a transformation T−m

up to Clifford corrections.

When p = 3, we use the same state injection, with m = 1. One finds after some calculation that

if the measurement outcome is ` = 0, the implemented operations is T−1 to the source, if ` = 1, it

is e−2πi/9ST−1, and if ` = 2, it is e2πi/9Z−1S−1T−1. Thus, in all cases, the implemented operation

is T−1 up to a Clifford correction.

The injected T gates together with Cliffords form a universal gate set [47, App. D]. This is a

corollary of [49, Thm. 7.3] that says the Clifford group is a maximal finite subgroup of U(pn) up to

global phase factors, and [50, Cor. 6.8.2] that says any infinite subgroup (even after quotienting out

phase factors) containing the Clifford group is dense in U(pn).

Note that Tm and T−m are interconvertible by Cliffords. More generally, it is possible to use

Clifford operations to convert a gate Tm into another gate Tm
′

with m′ = mn3 for n 6= 0, by

U = U(n) =
∑

j |nj〉 〈j| gate. For p > 3, we have U †TmU =
∑

j ω
mg(nj) |j〉 〈j| where

g(nj) =
1

6
(n3j3 − nj) = n3g(j) +

n3 − n
6

j. (D.10)

Thus U †TmU = Tmn
3
Zm

n3−n
6 , and so indeed Tm = C1T

m′C2 for some Cliffords C1, C2. For p = 3,

we see T = U(−1)T−1U(−1). Now, for which pairs m,m′ can we find an n such that m′ = mn3?

The multiplicative group F×p is cyclic of order p− 1. Therefore, when p− 1 is not a multiple of 3,

then F×p 3 n 7→ n3 ∈ F×p is a bijection, and any Tm can be interconverted into any other Tm
′
. If

p− 1 is a multiple of 3, there are three distinct classes of T gates. Since −1 = (−1)3, Tm and T−m

are always interconvertible.

2. Inner codes

For arbitrary vector v ∈ Fninner
p we write X(v) = Xv1 ⊗ · · · ⊗Xvninner , and Z(v) = Zv1 ⊗ · · · ⊗

Zvninner . As in the weakly self-dual CSS code construction for qubits, it is straightforward to

define a stabilizer code starting from a self-orthogonal subspace S ⊂ S⊥ ⊂ Fninner
p : The stabilizer

group is generated by X(v) and Z(v) where v ∈ S. The quotient space S⊥/S is in one-to-one

correspondence with the set of X-type (Z-type) logical operators, and the induced dot product on



42

S⊥/S is non-degenerate. In Section E below, we show that there is a basis {v(1), . . . , v(kinner)} of

S⊥/S such that v(i) · v(j) = αjδij where the scalars αj are all 1 possibly except the last one. For

simplicity we restrict ourselves to cases where

(1, 1, . . . , 1) ∈ S, (D.11)

v(i) · v(j) = δij ., (D.12)

i.e., the second condition is that all scalars αj are equal to 1. The first condition demands that

ninner to be a multiple of p. The second is a mild restriction, since (S ⊕ S)⊥/(S ⊕ S) always has a

basis such that (D.12) holds. Given a basis {v(j)} satisfying (D.12), we define logical operators of

the inner code as

X̃(j) = X(v(j)),

Z̃(j) = Z(v(j)), (D.13)

which indeed obey the commutation relation

Z̃(a)X̃(b) = ωδabX̃(b)Z̃(a) (D.14)

of the generalized Pauli operators on kinner qudits. Thus, this is a generalization of the normal

codes in the qubit case. Due to (D.11), the transversal gate S̄ = S⊗ninner is a logical operator:

SjXkS−j = ω−jk(k+1)/2ZjkXk (D.15)

S̄X(v)S̄−1 = ω−(v·v+v·
~1)/2Z(v)X(v) (D.16)

where in the second equation the phase factor vanishes when v ∈ S.

We will implement the measurement of the stabilizer TmXT−m of the magic state |ψm〉 using

the inner codes. The measurement becomes feasible if C(TmXT−m) can be implemented for

logical qudits. We begin searching for its fault-tolerant implementation by observing an identity

C(TmXT−m) = Tm(CX)T−m that enables us to implement some controlled Clifford on logical

qudits. The actual action on logical qubits depends on the inner code, but our conditions (D.11, D.12)

will make it uniform across all logical qudits.

Recall TmXT−m = η−1SmX where η = 1 if p > 3 and η = e2πi/9 if p = 3. The action of the

transversal gate T̄mX̄T̄−m can be deduced by looking at the logical operators and phase. The

answer is

T̄mX̄T̄−m = η−ninnerS̄mX̄ ∼= ηkinner−ninner

kinner∏
a=1

η−1(S̃(a)(Z̃(a))1/2)m (D.17)
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because

S̄mX̃(a)S̄−m = ω−m/2(Z̃(a))mX̃(a)

S̄mZ̃(a)S̄−m = Z̃(a)

S̄m
∑
v∈S

X(v)√
|S|
|0〉⊗ninner

︸ ︷︷ ︸
|0̃〉⊗kinner

= |0̃〉⊗kinner
,


(SmZm/2)X(SmZm/2)−1 = ω−m/2ZmX

(SmZm/2)Z(SmZm/2)−1 = Z

(SmZm/2) |0〉 = |0〉

. (D.18)

Suppose p > 3. In order to implement C(S̃mX̃), we consider an equation and a solution

C(SmX) = (CX1−y)(CZu)(CSx)(CXy)(CSz)(CZs)(Cωt) (D.19)

C(SmX) = (CX1/3)[(CZ3m/8)(CS3m/4)](CX2/3)[(CSm/4)(CZm/8)](Cω−m/6) (D.20)

where the control is common for every gate, and u, x, y, z, s, t are variables. (Using CA =
∑

j |j〉 〈j|⊗
Aj , one can evaluate matrix elements on both sides.) Note that the operators in the brackets are

powers of C(SmZm/2). This implies that indeed simultaneous C(S̃mX̃) on all logical qudits can be

implemented using T̄m(CX̄3m/4)T̄−m, T̄m(CX̄m/4)T̄−m, controlled Pauli logical operators, and a

power of Z on the control.

When p = 3 it suffices to consider m = 1. To remove the phase factor ηkinner−ninner we require

that the kinner is a multiple of 3. This can be achieved by considering three copies of a given code if

necessary. ninner is already a multiple of 3 due to (D.11). We can implement
∏kinner
a=1

C(η−1S̃(a)X̃(a))

by an identity

C(η−1SX) = (CX−1)(C(η−1SZ−1))(CZ)(CX−1)(CZ−1)(Cω2). (D.21)

We have shown that it is possible to build a fault-tolerant routine to measure T̃mX̃T̃−m.

We have not yet shown how to construct such inner codes. It is possible to generalize Lemma IV.9

to the case of matrices over a field Fp for p > 2; however, the generalization is more difficult since the

self-orthogonality constraint implies a nonlinear constraint on the rows of the matrix so that each row

is null; see Lemma E.4. Let us give an alternative construction which achieves the scaling similar to

Lemma IV.11, namely that for any distance d, one can find a family of normal weakly self-dual qudit

CSS codes with X(~1) in the stabilizer group such that the ratio kinner/ninner → 1 as ninner →∞.

This construction is derived from Reed-Muller codes. Let C = RMFp(r,m) be a classical Reed-Muller

code over Fp; the codewords have length pm. The dual code is C⊥ = RMFp(m(p− 1)− r − 1,m);

see Theorem 5.4.2 of Ref. [51]. For any fixed r, for large enough m, C ⊂ C⊥, so the codespace of

C is self-orthogonal, and ~1 is in the codespace of C. We use the codespace of C as the space S,
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and use the CSS construction to define a weakly self-dual code. For fixed r, the rate of C tends to

zero at large m, so the rate of the resulting weakly self-dual tends to 1. See Ref. [52] for weakly

self-dual qubit codes derived from Reed-Muller codes. To make (D.12) hold, it may be necessary to

use S ⊕ S instead of S.

3. Outer codes

If the inner code has code distance d, then we should use an outer code with a parity check

matrix that is (d − 1, dd−12 e)-sensitive. In full generality, one would want to use a parity check

matrix with entries in Fp, where an entry β 6= 0 would mean a stabilizer (η−1SmX)β. This makes

it necessary to have a different logical operator choice than we have used above.

However, a check matrix that is given by the adjacency matrix of a biregular graph with large

girth is sufficient for us. Such a check matrix has only 0 and 1 entries, so no other choice of logical

operator is necessary beyond what we have given above. Recall that a graph with large girth is

locally a tree. Hence, a bad magic state will be caught by many checks because it flips a single

stabilizer in these checks, and the required sensitivity is guaranteed.

Appendix E: Symmetric forms over finite fields

We have classified nondegenerate symmetric forms over the binary field F2 in Section III. Over

a field of odd characteristic, the set of all finite dimensional vector spaces with nondegenerate

symmetric forms (quadratic spaces for short) constitute an abelian group under the direct sum,

after identifying hyperbolic planes as the identity. This group is known as the Witt group of the

field, and the group structure is well known. Here we present a self-contained and elementary

treatment of the Witt group of Fp, and classify the quadratic spaces over fields of odd characteristic.

A square element, or a square for short, is any member of the set {x2 : x ∈ F2
p}.

It is natural to distinguish two cases depending on whether −1 ∈ Fp is a square, since a one-

dimensional quadratic space is classified by F×p /(F×p )2, where F×p := Fp \ {0} and (F×p )2 := {x2 | x ∈
F×}. Since the multiplicative group F×p is a cyclic group of order p− 1, the element −1 being the

unique element of F× with multiplicative order 2, is a square if and only if p = 1 mod 4.

The part of the argument in Section III applies here without any change where we have inductively

converted any non-degenerate symmetric matrix to a direct sum of a diagonal matrix and blocks of
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0 1

1 0

 , which represents a hyperbolic plane. Below, we assume that symmetric matrices are block

diagonal in this form. It is then easy to explain why quadratic spaces constitute a group:1 1

1 −1

T a 0

0 −a

1 1

1 −1

 =

 0 2a

2a 0

 '
0 1

1 0

 (E.1)

This means that the one-dimensional quadratic space with form (−a) is the inverse of the space

with form (a). It is important here that 2 is an invertible element of the field.

We note that the determinant of the symmetric form up to squares is a nontrivial invariant

valued in the multiplicative group F×p /(F×p )2 which is isomorphic to the additive group Z/2Z. Let

α ∈ Fp be a non-square.

Case I: p = 1 mod 4 so that −1 ∈ (F×p )2. Consider a block diag(a, a) of the symmetric matrix.

Since −1 is a square, we see diag(a, a) ' diag(a,−a) ' diag(1,−1) ' diag(1, 1) under congruent

transformations. Therefore, there are four classes of symmetric matrices up to hyperbolic planes:

diag(1), diag(α), diag(1, α), and diag(1, 1). By looking at the determinant of the form and the

parity of the dimension, we see that the four classes are distinct elements of the Witt group, which

is hence isomorphic to Z/2Z⊕ Z/2Z. Given a dimension of quadratic spaces, we see there are only

two exclusive possibilities:

diag(1, 1, . . . , 1, 1), and diag(1, 1, . . . , 1, α). (E.2)

Case II: p = 3 mod 4 so that −1 /∈ (F×p )2. In this case, we can set α = −1. We claim that

diag(1, 1) is not hyperbolic. If v = av1 + bv2 is a vector in this two-dimensional space, where v1, v2

are basis vectors with v2i = 1 and a, b ∈ Fp, then v · v = a2 + b2. Since −1 is not a square, the

equation a2 + b2 = 0 does not have any nonzero solution, and this proves the claim. Next, we show

that diag(1, 1) ' diag(−1,−1). To this end, we will find a solution to a2 + b2 + 1 = 0 over Fp. Once

we have such a solution, then we seea b

b −a

T 1 0

0 1

a b

b −a

 =

−1 0

0 −1

 . (E.3)

The existence of the solution follows from (F×p )2+(F×p )2 6⊆ (F×p )2, which implies that (F×p )2+(F×p )2 3
−1. If (F×p )2 + (F×p )2 ⊆ (F×p )2, then (F×p )2 would be a monoid under addition contained in a finite

group, and hence would be a group itself, which must contain 0 /∈ (F×p )2. Therefore, quadratic

spaces given a dimension are classified by the determinant of the form up to squares.

diag(1, 1, . . . , 1, 1), and diag(1, 1, . . . , 1,−1) (E.4)
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The Witt group of Fp is isomorphic to Z/4Z generated by diag(1).

Now we state and prove some facts about quadratic spaces.

Lemma E.1 (Chapter XV Theorem 10.2 of Ref. [53]). Let Q be a nondegenerate quadratic space.

If two subspaces V and U are isomorphic by an isometry σ : V → U , then there exists an isometry

σ̄ : Q→ Q such that σ̄|V = σ.

Lemma E.2. Let N be a null subspace (on which the symmetric form vanishes) of a nondegenerate

quadratic space Q over Fp. Then, Q is isometric to the orthogonal sum of N⊥/N and a minimal

hyperbolic subspace that contains N .

Proof. Applying Lemma E.1 to the identity map σ, we conclude that any orthogonal set of vectors

extends to an orthogonal basis. Since the form is nondegenerate, there exists a minimal hyperbolic

subspace that includes N (hyperbolic extension), and the symmetric form can be written as Λ′ ⊕ λ.

where λ is hyperbolic, and Λ′ is nondegenerate. It is then clear that N⊥/N has the symmetric form

Λ′.

Lemma E.3. Let Q be a nondegenerate quadratic space of dimension n over Fp. Every maximal

null subspace of Q has the same dimension m. Given any null subspace N of dimension k ≤ m, the

number of null vectors of Q that are orthogonal to N is

#Z(Q,N) = pn−k−1 + pm − pn−m−1 =: ζ(n,m, k). (E.5)

Proof. To prove the first claim, suppose M,M ′ are maximal null subspaces. If dimM ≤ dimM ′,

then any injection from M to M ′ is an isometry, which can be extended to Q as σ̄. Then, σ̄−1(M ′)

is a null superset of M , and hence is M itself since M is maximal. Thus, dimM = dimM ′.

Let Z(Q,N) be the set of all null vectors of Q that are orthogonal to N . (Z is not a subspace

in general.) Consider φ : Z(Q,N) → Z(N⊥/N, 0), a restriction of the canonical projection map

Q→ Q/N . The map φ is surjective by definition of ζ. If x, y ∈ Z(Q,N) are mapped to the same

element, then x− y ∈ N . This implies that φ maps exactly #N elements to one. (Here, # denotes

the number of elements of the finite set.) Therefore,

#Z(Q,N) = (#N)(#Z(N⊥/N, 0)). (E.6)

Due to the preceding lemma, the dimension of a maximal null subspace of N⊥/N is m− k. Thus,

it remains only to prove the lemma when k = 0 since

#Z(Q, k) = pk(pn−2k−1 − pn−m−k−1 + pm−k) = pn−k−1 − pn−m−1 + pm. (E.7)
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A definite quadratic space is one in which w · w = 0 implies w = 0.11 To count all null vectors,

we work in a basis such that the n-by-n symmetric matrix is

Λ = Λ′ ⊕ Λ2m (E.8)

where Λ′ definite, and Λ2m = 1
2

0 1

1 0

⊗ Im is an orthogonal sum of m hyperbolic planes. In this

basis, let us write any vector x as x′⊕ (u, u′). The nullity is then expressed by a quadratic equation

of coordinates

x′ · x′ + u · u′ = 0. (E.9)

The solutions of this equation are divided into two classes: x′ · x′ = 0 or x′ · x′ 6= 0. In the former

case, x′ = 0 and u · u′ = 0. Given arbitrary u there is u′ such that this equation holds. The number

of solutions is pm+(pm−1)pm−1. In the latter case, we must have u 6= 0, and u ·u′ = c = −x′ ·x′ 6= 0

is a inhomogeneous equation in u′, whose solution always exists. For any given nonzero c, there are

thus (pm − 1)pm−1 choices of (u, u′). x′ can be any nonzero vector, so there are pn−2m − 1 choices.

In sum, the number of null vectors in an n-dimensional quadratic space Q over Fp is

#Z(Q, 0) = pm + (pm − 1)pm−1 + (pn−2m − 1)(pm − 1)pm−1 = pn−1 − pn−m−1 + pm. (E.10)

Lemma E.4. Let w1 = ~1 ∈ Fnp be the all-1 vector where n is a multiple of p ≥ 3. Assume

c < (n− 2)/2, and let w2, . . . , wc be null vectors of Fnp chosen inductively such that wj is chosen

uniformly at random from Z(Fnp , Vj−1) where Vj−1 = span(w1, . . . , wj−1). Let M be a c-by-n matrix

with rows wj.

Consider a fixed n-component vector v, with v 6= 0 and v 6= ~1. The probability that Mv = 0 is

bounded from above by

20

(
3

5

)n−c
+

(
11

15

)c−1
. (E.11)

Proof. We will estimate the desired probability by a union bound, considering separately the event

that v ∈ V ⊥c and v 6∈ Vc, and the event that v ∈ V ⊥c and v ∈ Vc. The second event is possible only

if v · v = 0. By the classification of symmetric forms, a maximal null space of Fnp has dimension m

such that n− 2 ≤ 2m ≤ n. The assumption that c < (n− 2)/2 implies that

kj := dimVj ≤ j ≤ c ≤ m− 1. (E.12)

11 A definite space corresponds to a nontrivial element of the Witt group. For example, a one-dimensional

nondegenerate space is definite. If α is not a square, then the symmetric form diag(1,−α) is definite.
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Consider the first event, assuming v · v = 0. Let j > 1. Then

Pr[v ∈ V ⊥j and v /∈ Vj |v ∈ V ⊥j−1 \ Vj−1] ≤
ζ(n,m, kj−1 + 1)

ζ(n,m, kj−1)
≤ p

2p− 1
≤ 3

5
(E.13)

because wj has to be orthogonal to span(v) + Vj−1, which is null and is a proper superset of Vj−1.

Thus, for any t,

Pr[v ∈ V ⊥t and v 6∈ Vt] = Pr[v ∈ V ⊥1 \ V1]
t∏

j=2

Pr[v ∈ V ⊥j \ Vj | v ∈ V ⊥j−1 \ Vj−1]

≤
t∏

j=2

ζ(n,m, kj−1 + 1)

ζ(n,m, kj−1)

≤
(

3

5

)t−1
. (E.14)

For t = c, we find in particular that

Pr[v ∈ V ⊥c and v 6∈ Vc] ≤
(

3

5

)c−1
. (E.15)

Now assume v · v 6= 0. The event that v ∈ V ⊥j happens only if wj is chosen from v⊥. We bound

the decomposition Pr[v ∈ V ⊥c ] = Pr[v ∈ V ⊥1 ]
∏c
j=2 Pr[v ∈ V ⊥j |v ∈ V ⊥j−1]. The first term is bounded

by 1 trivially. For other factors, we observe that the dimension of v⊥ is n− 1, and a maximal null

subspace in v⊥ has dimension m′ ≤ m. Under the conditioning v ∈ V ⊥j−1, the null space Vj−1 is a

subspace of v⊥, and #Z(v⊥, Vj−1) = ζ(n− 1,m′, kj−1) ≤ ζ(n− 1,m, kj−1). Hence,

Pr[v ∈ V ⊥c ] = Pr[v ∈ V ⊥1 ]

c∏
j=2

Pr[v ∈ V ⊥j |v ∈ V ⊥j−1]

≤
c∏
j=2

ζ(n− 1,m, kj−1)

ζ(n,m, kj−1)

≤
(
p2 + p− 1

2p2 − p

)c−1
≤
(

11

15

)c−1
(E.16)

where in the second inequality, we used the assumption that kj−1 ≤ c < (n− 2)/2 ≤ m.

Let us turn to the second event, assuming v · v = 0. Note that if v ∈ Vc, there is a least j such

that v ∈ Vj . So,

Pr[v ∈ V ⊥c and v ∈ Vc] ≤
c∑
j=2

Pr[v ∈ Vj and v ∈ V ⊥j−1 and v 6∈ Vj−1]. (E.17)

We have

Pr[v ∈ Vj and v ∈ V ⊥j−1 and v 6∈ Vj−1]

= Pr[v ∈ V ⊥j−1 and v 6∈ Vj−1] · Pr[v ∈ Vj |v ∈ V ⊥j−1 and v 6∈ Vj−1]

≤
(

3

5

)j−2
Pr[v ∈ Vj |v ∈ V ⊥j−1 and v 6∈ Vj−1], (E.18)
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where we used Eq. (E.14). The second factor is bounded as

Pr[v ∈ Vj |v ∈ V ⊥j−1 and v 6∈ Vj−1] ≤
p1+kj−1

ζ(n,m, kj−1)
<

3

2pn−2j
(E.19)

because wj belongs to span(v) + Vj−1. Hence, Pr[v ∈ Vj and v ∈ V ⊥j−1 and v /∈ Vj−1] ≤ 5(35)n−j . So

by Eq. (E.17),

Pr[v ∈ V ⊥c and v ∈ Vc] ≤
c∑
j=2

5

(
3

5

)n−j
< 20

(
3

5

)n−c
. (E.20)

Summing the probabilities of (E.16) and (E.20), we conclude the proof.
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