
Theoretical Aspects of Symbolic Automata ?

Hellis Tamm1 and Margus Veanes2

1 Tallinn University of Technology
hellis@cs.ioc.ee

2 Microsoft Research
margus@microsoft.com

Abstract. Symbolic finite automata extend classical automata by al-
lowing infinite alphabets given by Boolean algebras and having transi-
tions labeled by predicates over such algebras. Symbolic automata have
been intensively studied recently and they have proven useful in several
applications. We study some theoretical aspects of symbolic automata.
Especially, we study minterms of symbolic automata, that is, the set
of maximal satisfiable Boolean combinations of predicates of automata.
We define canonical minterms of a language accepted by a symbolic au-
tomaton and show that these minterms can be used to define symbolic
versions of some known classical automata. Also we show that canonical
minterms have an important role in finding minimal nondeterministic
symbolic automata. We show that Brzozowski’s double-reversal method
for minimizing classical deterministic automata as well as its generaliza-
tion is applicable for symbolic automata.

1 Introduction

Symbolic finite automata are finite state automata with an alphabet given by
a Boolean algebra which can possibly have an infinite domain, and with tran-
sitions labeled by predicates over such algebra. Symbolic finite automata are a
generalization of nondeterministic finite automata (NFAs), with a motivation for
their introduction coming from practical applications which require handling of
large or infinite alphabets.

Automata with predicates was first mentioned in [18]. We consider symbolic
finite automata as defined in [4], where predicates are drawn from a decidable
Boolean algebra. These automata have been intensively studied recently, for
example, in the context of minimization of deterministic symbolic automata [5],
computing forward bisimulations for nondeterministic symbolic automata [6],
learning symbolic automata [9], and others.

We study some theoretical aspects of symbolic automata. We call the lan-
guages accepted by symbolic automata symbolic regular languages. These lan-
guages can be expressed with symbolic regular expressions. A similar symbolic

? This work was supported by the Estonian Ministry of Education and Research in-
stitutional research grant IUT33-13.

generalization of regular expressions, called extended regular expressions, was
used in [11] where also intersection and negation operators were supported.

We study minterms of symbolic automata, that is, the set of maximal satis-
fiable Boolean combinations of predicates of automata. It was pointed out in [4,
5] that minterms can be used as a finite alphabet when adapting classical au-
tomata algorithms to the symbolic setting. This is because a symbolic automaton
has a finite number of transition predicates, implying that the set of minterms
is finite as well. We show that any symbolic regular language has a minimal
set of minterms, the minterms of its minimal deterministic automaton. This set
of minterms is unique up to predicate equivalence. We show that this set of
canonical minterms can be used in place of a finite alphabet to define symbolic
versions of some known NFAs, such as the symbolic átomaton and canonical
symbolic residual finite state automaton of the language. Also we show that the
minterms of a language have an important role in finding minimal nondetermin-
istic symbolic automata.

We show that Brzozowski’s double-reversal method for minimizing classical
deterministic automata as well as its generalization is applicable for symbolic
automata.

2 Symbolic Regular Languages and Symbolic Finite
Automata

An effective Boolean algebra B has components (Σ,Ψ, [[]],⊥,>,∨,∧,¬), where
Σ is a set of domain elements, Ψ is a set of predicates closed under the Boolean
connectives, and ⊥,> ∈ Ψ . The denotation function [[]] : Ψ → 2Σ is such that
[[⊥]] = ∅, [[>]] = Σ, and for all ϕ,ψ ∈ Ψ , [[ϕ∨ψ]] = [[ϕ]]∪ [[ψ]], [[ϕ∧ψ]] = [[ϕ]]∩ [[ψ]],
and [[¬ϕ]] = Σ \ [[ϕ]]. If [[ϕ]] 6= ∅, then ϕ is satisfiable. We require that checking
satisfiability is decidable.

A predicate ϕ is a subpredicate of ψ, if [[ϕ]] ⊆ [[ψ]].
Elements of Σ are characters. A word over Σ is a sequence ai1 · · · aim , where

aij ∈ Σ, j = 1, . . . ,m. If m = 0, then we get the empty word, denoted by ε. The
set of all words over Σ is denoted by Σ∗. We require that Σn ∩Σ = ∅ for n ≥ 2.

We define a symbolic regular expression as follows:

– The constants ε and ∅ are symbolic regular expressions, denoting the lan-
guages {ε} and ∅, respectively.

– For any predicate ϕ ∈ Ψ , ϕ is a symbolic regular expression, denoting the
language L(ϕ) = [[ϕ]].

– For any symbolic regular expressions X and Y , the expressions X +Y , XY ,
and X∗ are symbolic regular expressions, denoting respectively the languages
L(X) ∪ L(Y), L(X)L(Y), and (L(X))∗.

Any language defined by a symbolic regular expression is a symbolic regular
language.

A symbolic nondeterministic finite automaton (s-NFA) is a quintuple N =
(B,Q,∆, I, F), where B = (Σ,Ψ, [[]],⊥,>,∨,∧,¬) is an effective Boolean alge-
bra, called the alphabet, Q is a finite set of states, ∆ ⊆ Q× Ψ ×Q is a finite set

2

of transitions, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. The left language of a state q of N , denoted by LI,q(N), is the set of
words w ∈ Σ∗ such that, either w = ε and q ∈ I, or w = a1 . . . ak and there exist
states q1, . . . , qk ∈ Q such that (qi−1, ϕi, qi) ∈ ∆ and ai ∈ [[ϕi]], with q0 ∈ I and
qk = q. The right language, or simply, the language of a state q of N , denoted
by Lq,F (N), or simply, Lq(N), is the set of words w ∈ Σ∗ such that, either
w = ε and q ∈ F , or w = a1 . . . ak and there exist states q1, . . . , qk ∈ Q such that
(qi−1, ϕi, qi) ∈ ∆ and ai ∈ [[ϕi]], with q0 = q and qk ∈ F . A state is unreachable
if its left language is empty. A state is empty if its right language is empty. An
s-NFA is trim if it does not have any unreachable or empty states. The language
accepted by N is L(N) =

⋃
q∈I Lq(N). Two s-NFAs are equivalent if they accept

the same language. The reverse of an s-NFA N = (B,Q,∆, I, F) is the s-NFA
NR = (B,Q,∆R, F, I), where (q, ϕ, p) ∈ ∆R if and only if (p, ϕ, q) ∈ ∆ for
p, q ∈ Q and ϕ ∈ Ψ . An s-NFA N is normalized for predicates if for all p, q ∈ Q
there is at most one predicate ϕ such that (p, ϕ, q) ∈ ∆. Any s-NFA N can be
normalized, resulting in the s-NFA NN , where all distinct transitions (p, ϕ1, q)
and (p, ϕ2, q) from any state p to any state q have been replaced by a single
transition (p, ϕ1 ∨ϕ2, q). An s-NFA N is complete if for every p ∈ Q and a ∈ Σ,
there is a transition (p, ϕ, q) ∈ ∆ with a ∈ [[ϕ]], q ∈ Q. If N1 = (B,Q1, ∆1, I1, F1)
and N2 = (B,Q2, ∆2, I2, F2) are s-NFAs, then a map π from Q1 into Q2 is a
morphism from N1 into N2 if and only if π(I1) ⊆ I2, π(F1) ⊆ F2, and for all
states p, q ∈ Q1 and a ∈ Σ it holds that if (p, ϕ1, q) ∈ ∆1 for some ϕ1 such that
a ∈ [[ϕ1]], then there is some ϕ2 such that (π(p), ϕ2, π(q)) ∈ ∆2 and a ∈ [[ϕ2]].

Sometimes it is useful to allow transitions on the empty word ε in a symbolic
automaton. A symbolic nondeterministic finite automaton with epsilon transi-
tions (s-εNFA) is N = (B,Q,∆, I, F), where B, Q, I, and F are as in an
s-NFA, and ∆ ⊆ Q× (Ψ ∪ {ε})×Q.

Similarly to regular languages, one can show that symbolic regular languages
are accepted by s-NFAs and vice versa.

We can apply the well-known Thompson’s construction [15, 17] to a symbolic
regular expression, to obtain an s-εNFA. We present a slightly modified version
of this construction in the following proposition:

Proposition 1. Every symbolic regular language is accepted by an s-εNFA.

Proof. An s-εNFA can be constructed from any symbolic regular expression,
using structural induction which involves parts described as follows: First, the
s-εNFAs for the constants ε and ∅ are respectively Nε = (B, {q}, ∅, {q}, {q})
and N∅ = (B, ∅, ∅, ∅, ∅), and the s-εNFA for any predicate ϕ ∈ Ψ is Nϕ =
(B, {q1, q2}, {(q1, ϕ, q2)}, {q1}, {q2}).

Now, letNX = (B,QX , ∆X , IX , FX) be the s-εNFA for the expression X, and
let NY = (B,QY , ∆Y , IY , FY) be the s-εNFA for the expression Y , where the
sets QX and QY are disjoint. The s-εNFAs for the expressions XY , X + Y , and
X∗ are respectively NXY = (B,QX ∪QY , ∆X ∪∆Y ∪ (FX ×{ε}× IY), IX , FY),
NX+Y = (B,QX ∪QY ∪ {q1, q2}, ∆X ∪∆Y ∪ ({q1} × {ε} × (IX ∪ IY)) ∪ ((FX ∪
FY)×{ε}×{q2}), {q1}, {q2}), and NX∗ = (B,QX ∪{q1, q2}, ∆X ∪ ({q1}×{ε}×
(IX ∪{q2}))∪ (FX ×{ε}× (IX ∪{q2})), {q1}, {q2}), where q1, q2 6∈ QX ∪QY . ut

3

Similarly to finite automata accepting regular languages, an s-εNFA can be
converted to an equivalent s-NFA by eliminating epsilon transitions by standard
methods.

An s-NFA N = (B,Q,∆, I, F) is a symbolic deterministic finite automaton
(s-DFA) if |I| = 1 and if for all transitions (p, ϕ, q), (p′, ϕ′, q′) ∈ ∆ it holds
that if p = p′ and ϕ ∧ ϕ′ is satisfiable, then q = q′. An s-NFA N can be
determinized to obtain an equivalent s-DFA ND = (B,QD, ∆D, {s0}, FD), using
a symbolic version [16] of the well-known subset construction procedure. We
present here a slightly modified variant of it which produces a complete and
normalized s-DFA. Similarly to the classical subset construction, this procedure
gradually forms the set QD of states, along with the set ∆D of transitions of
ND, including only reachable states, starting with QD = {I} and ∆D = ∅. For
every s ∈ QD, we do the following steps: first, we form the set Ss of states q
of N such that there is a transition (p, ϕ, q) ∈ ∆ from a state p ∈ s to q with
some ϕ ∈ Ψ ; then, for all q ∈ Ss, let ϕs,q =

∨
(p,ϕ,q)∈∆,p∈s ϕ; for every s′ ⊆ Ss,

let ϕs,s′ = (
∧
q∈s′ ϕs,q) ∧ (

∧
q∈Ss\s′ ¬ϕs,q); if ϕs,s′ is satisfiable, then we add s′

to QD (if s′ 6∈ QD) and add the transition (s, ϕs,s′ , s
′) to ∆D. Finally, we let

s0 = I and FD = {s ∈ QD | s ∩ F 6= ∅}.
We assume for the rest of the paper that s-DFAs are complete. An s-DFA

is minimal if it has the minimal number of states among all equivalent s-DFAs.
We also require that a minimal s-DFA is normalized for predicates. A minimal
s-DFA is unique up to renaming of states and equivalence of predicates [5]. In
the minimal s-DFA, the languages of any two distinct states are different from
each other. It is easy to see that every predicate occurring in any s-DFA with
reachable states only, is a subpredicate of some predicate of the minimal s-DFA
of the same language. This is because the minimal s-DFA can be obtained from
any such s-DFA by merging some states and transitions.

3 Brzozowski’s Theorem for Symbolic Automata

In this section we consider non-empty symbolic regular languages. We show the
symbolic version of a (slightly modified) classical result by Brzozowski [2]:

Theorem 1. If an s-NFA N has no empty states and NR is an s-DFA, then
ND is minimal.

Proof. Let N = (B,Q,∆, I, F) be an s-NFA with no empty states such that its
reverse s-NFA NR = (B,Q,∆R, F, I) is an s-DFA. We note that F is a singleton
set. If |Q| = 1, thenN andNR are the same automata. The determinized version
ND of N is complete and normalized, and has one or two states. In the former
case ND is clearly minimal. In the latter case, one of the states of ND is the
initial state with a non-empty language, and the other is an empty state, so the
languages of these two states are different, implying that ND is minimal.

We now consider the case where |Q| ≥ 2. Let q, q′ ∈ Q, with q 6= q′. We show
that Lq(N) ∩ Lq′(N) = ∅. Indeed, suppose that there is a word w ∈ Σ∗ such

4

that w ∈ Lq(N) and w ∈ Lq′(N). If w = ε, then both q and q′ must be final, but
since N has only one final state, we have a contradiction. If w = a1 . . . ak, where
k ≥ 1, then there are some states qi−1, q

′
i−1, qi ∈ Q such that qi−1 6= q′i−1, and

transitions (qi−1, ϕ, qi), (q
′
i−1, ϕ

′, qi) ∈ ∆ with ai ∈ [[ϕ]] and ai ∈ [[ϕ′]]. Therefore,
ϕ ∧ ϕ′ is satisfiable, implying that NR is not deterministic, a contradiction.

Now, let s1 and s2 be any two states of ND, where s1 6= s2. We show that
Ls1(ND) 6= Ls2(ND). Indeed, because both s1 and s2 are subsets of Q, there
is a state q ∈ Q such that either q ∈ s1 and q 6∈ s2, or q ∈ s2 and q 6∈ s1.
Since Ls1(ND) =

⋃
q∈s1 Lq(N) and Ls2(ND) =

⋃
q∈s2 Lq(N), and because we

assumed that Lq(N) 6= ∅ for any q ∈ Q, and showed above that Lq(N) ∩
Lq′(N) = ∅ for every q, q′ ∈ Q with q 6= q′, it holds that Ls1(ND) 6= Ls2(ND).
Therefore, ND is minimal. ut

Based on Theorem 1, similarly to its classical version, it is possible to get
a minimization algorithm for s-DFAs which we call Brzozowski’s minimization
or double-reversal minimization algorithm. By this algorithm, the minimal s-
DFA of a language can be obtained from any s-NFA N by first applying the
determinization procedure to the reverse NR of N to obtain an s-DFA NRD of
the reverse language, and then applying determinization to its reverse NRDR to
obtain the s-DFA NRDRD. By Theorem 1, NRDRD is a minimal s-DFA.

4 Minterms of Symbolic Automata

Let L be a symbolic regular language. Let N be an s-NFA of L and let NN

be the s-NFA obtained from N by predicate normalization. Let ϕ1, . . . , ϕk be
the predicates occurring in NN . Any satisfiable predicate (

∧
i∈S ϕi)∧(

∧
i∈S ¬ϕi)

with S ⊆ {1, . . . , k} and S = {1, . . . , k}\S is a minterm of N . Obviously, N and
NN have the same set of minterms. Also, it is easy to see that every predicate of
NN is a disjunction of minterms of N . The minterms of N provide a partition
of Σ.

We show that the minterms of any s-NFA of L are a refinement of the
minterms of the minimal s-DFA of L.

Proposition 2. Any minterm of an s-NFA of L is a subpredicate of some
minterm of the minimal s-DFA of L.

Proof. Let us first consider an s-NFA N that has only reachable states, and its
normalized variant NN . We notice that the determinized versions ND and NND

of these two automata are the same s-DFAs (up to predicate equivalence). Let
s ⊆ Q be a state of NND. Let ϕ1, . . . , ϕk be the predicates occurring in NN

as the labels of out-transitions of the states p ∈ s, and let ψ1, . . . , ψ` be the
predicates in NND which occur as the labels of out-transitions of s. According
to how NND is constructed from NN , we notice that every ψj is a disjunction
of predicates of the form (

∧
i∈S ϕi)∧ (

∧
i∈S ¬ϕi), where S ⊆ {1, . . . , k} and S =

{1, . . . , k}\S, therefore any predicate (
∧
i∈S ϕi)∧(

∧
i∈S ¬ϕi) is a subpredicate of

some ψj . Since NND is deterministic, ψh∧ψj is not satisfiable if h 6= j, and thus

5

(
∧
i∈S ϕi) ∧ (

∧
i∈S ¬ϕi) is a subpredicate of ψj ∧ (

∧
h∈{1,...,`},h6=j ¬ψh). Because

every minterm of NN is a conjunction of predicates of the form (
∧
i∈S ϕi) ∧

(
∧
i∈S ¬ϕi), and every minterm of NND is a conjunction of predicates of the

form ψj ∧ (
∧
h∈{1,...,`},h6=j ¬ψh), it is easy to see that every minterm of NN is

a subpredicate of some minterm of NND. Because the minterms of N and NN

are equal, and the same holds for the minterms of ND and NND, we get that
every minterm of N is a subpredicate of some minterm of ND.

Furthermore, because every predicate occurring in any s-DFA that has only
reachable states, is a subpredicate of some predicate of the minimal s-DFA (see
the end of Section 2), it is implied that any minterm of ND is a subpredicate
of some minterm of the minimal s-DFA of L. Thus, any minterm of N is a
subpredicate of some minterm of the minimal s-DFA of L.

Now, let us consider the case where an s-NFA N has some unreachable states.
It was shown above that any minterm of the reachable part ofN is a subpredicate
of a minterm of the minimal s-DFA. It is clear that every minterm of N is a
subpredicate of some minterm of the reachable part of N . We conclude that any
minterm of N is a subpredicate of some minterm of the minimal s-DFA of L. ut

Proposition 3. Let N be an s-NFA and let D be the minimal s-DFA of L. Any
minterm of D is a disjunction of minterms of N .

Proof. The minterms of N partition Σ, and so do the minterms of D. Since by
Proposition 2, any minterm of N is a subpredicate of some minterm of D, we
conclude that any minterm of D is a disjunction of minterms of N . ut

Considering that the minterms of any s-NFA of L are a refinement of the
minterms of the minimal s-DFA of L, we call the latter the (canonical) minterms
of L. Denoting the reverse language of L by LR, we can show the following:

Proposition 4. The minterms of L and LR are the same.

Proof. Let D be the minimal s-DFA of L. By Theorem 1, the minimal s-DFA
of LR can be obtained by reversing D and determinizing the resulting s-NFA
DR to get DRD. The set of transition predicates of DR is the same as the set
of transition predicates of D, because reversing an automaton does not change
predicates. Similarly, we get that the minterms of DR are the minterms of D.
The predicates of DRD are formed by using Boolean operations on predicates of
DR, and the resulting predicates are disjunctions of minterms of DR. Thus, the
minterms of DRD are disjunctions of the minterms of D.

By a similar reasoning as above we can obtain that the minterms of D are
disjunctions of the minterms of DRD. We conclude that the minterms of D and
DRD are the same, that is, the minterms of L and LR are the same. ut

We note that although a symbolic regular language L can be defined over
an infinite alphabet, the set of minterms of any s-NFA of L is finite, because an
s-NFA has a finite number of transitions. It is pointed out in [4, 5] that minterms
can be used as an alphabet when adapting classical automata algorithms to the

6

symbolic setting. Based on the results above, every symbolic regular language
has a minimal set of minterms which is unique (up to predicate equivalence), with
the reverse language having the same set of minterms. This set of minterms can
be used in place of a finite alphabet to define several kind of symbolic automata
for a given language as will be shown in Section 6.

5 Quotients and Atoms of Symbolic Languages

Similarly to the case of regular languages, the left quotient, or simply quotient,
of a symbolic regular language L by a word w ∈ Σ∗ is the language w−1L =
{x ∈ Σ∗ | wx ∈ L}. There is one initial quotient, ε−1L = L. A quotient is final
if it contains ε. Left quotients of L are the languages of the states of the minimal
s-DFA of L.

Atoms of regular languages were introduced in [1] as non-empty intersections
of complemented or uncomplemented quotients of the language. In [10] it was
shown that atoms are the left congruence classes of the language. In the same
way, we can define atoms of symbolic regular languages. For a symbolic regular
language L, the left congruence L≡ of L is defined as follows: for x, y ∈ Σ∗,
xL≡y if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L. An atom of L is a left
congruence class of L. Thus, an atom is a set of words which belong exactly to
the same quotients. That is, an atom of a language L with quotients K1, . . . ,Kn

is any non-empty language of the form K̃1 ∩ · · · ∩ K̃n, where K̃i is either Ki or
Ki, and Ki is the complement of Ki with respect to Σ∗. It is easy to see that
every quotient Ki is a union of atoms. An atom is initial if it has L (rather than
L) as a term; it is final if it contains ε. There is exactly one final atom, the atom

K̂1 ∩ · · · ∩ K̂n, where K̂i = Ki if ε ∈ Ki, and K̂i = Ki otherwise.
For any s-NFA N = (B,Q,∆, I, F) with a state set Q = {q1, . . . , qn} we can

define a language equation for each state qi as

Li =
⋃

(qi,ϕ,qj)∈∆

[[ϕ]]Lj ∪ Lεi , i = 1, . . . , n, (1)

where Lεi = {ε} if qi ∈ F , and Lεi = ∅ otherwise. This is similar to the way the
language equations were defined for NFAs in [1]. Also similarly to what was done
in [1], we can obtain equations for atoms of L, using the language equations of
the minimal s-DFA of L. Namely, because quotients are the languages of the
states of the minimal s-DFA, and atoms are intersections of complemented or
uncomplemented quotients, we can express atoms by taking intersections of the
right sides of the equations of the minimal s-DFA, or their negations.

We consider the minimal s-DFA D = (B,Q,∆, I, F) of L, with a state set
Q = {q1, . . . , qn}. Since the language of any state qi of D is some quotient Ki,
the equations

Ki =
⋃

(qi,ϕij
,qj)∈∆

[[ϕij]]Kj ∪Kε
i , i = 1, . . . , n, (2)

7

hold, where Kε
i = {ε} if ε ∈ Ki, and Kε

i = ∅ otherwise. Because any atom Ah can
be presented as an intersection Ah =

⋂
i∈Sh

Ki∩
⋂
i∈Sh

Ki, where Sh ⊆ {1, . . . , n}
and Sh = {1, . . . , n} \ Sh, we can compute the language equation for Ah from
the following expression:

Ah =
⋂
i∈Sh

(
⋃

(qi,ϕij
,qj)∈∆

[[ϕij]]Kj ∪Kε
i) ∩

⋂
i∈Sh

(
⋃

(qi,ϕij
,qj)∈∆

[[ϕij]]Kj ∪Kε
i). (3)

Since atoms are intersections of complemented or uncomplemented quotients,
we can convert formula (3), similarly to how a logical formula is converted into
its full disjunctive normal form, into the expression

Ah = [[ϕh1]]Ah1 ∪ · · · ∪ [[ϕhk
]]Ahk

∪Aεh, (4)

where ϕh1
, . . . , ϕhk

are obtained by applying Boolean operations on the pred-
icates appearing in (3), Ah1 , . . . , Ahk

are some atoms of L, and Aεh = {ε} if
ε ∈ Ah, and Aεh = ∅ otherwise. Clearly, ϕh1 , . . . , ϕhk

are disjunctions of minterms
of L. Based on this observation, we can state the following proposition:

Proposition 5. Let ϕ be a minterm of L. If aAj ⊆ Ai holds for some a ∈ [[ϕ]]
and atoms Ai, Aj of L, then [[ϕ]]Aj ⊆ Ai holds.

More generally, we show the following:

Proposition 6. Let ϕ be a minterm of L. If aLj ⊆ Li holds for some a ∈ [[ϕ]]
and unions of atoms Li, Lj of L, then [[ϕ]]Lj ⊆ Li holds.

Proof. Let aLj ⊆ Li hold for some a ∈ [[ϕ]] and languages Li, Lj consisting of
unions of atoms of L. Then for every Ah ⊆ Lj there is an atom Ag ⊆ Li such
that aAh ⊆ Ag. By Proposition 5, for every Ah ⊆ Lj there is an atom Ag ⊆ Li
such that [[ϕ]]Ah ⊆ Ag holds. Therefore, [[ϕ]]Lj ⊆ Li holds. ut

We will make use of Proposition 6 in the next section, where we define several
s-NFAs for a given language.

6 Generating Symbolic Automata

In this section we consider the symbolic version of a method presented in [14]
for generating NFAs from a set of languages. Similarly as in [14], we show that
with this method we can define symbolic versions of some known NFAs. For
the method to be able to work in the symbolic setting, minterms of a symbolic
language prove to be very useful.

Let L be a symbolic regular language. We define a set {L1, . . . , Lk} of lan-
guages to be a cover of L, if every quotient Kj of L is a union of some Li’s. We
say that a cover is atomic if every Li is a union of atoms of L. We note that
since L is the quotient of itself by the empty word ε, L is a union of some Li’s.
We define the s-NFA based on an atomic cover {L1, . . . , Lk} as follows:

8

Definition 1. The s-NFA generated by an atomic cover {L1, . . . , Lk} of L is
defined by G = (B,Q,∆, I, F), where Q = {q1, . . . , qk}, I = {qi | Li ⊆ L},
F = {qi | ε ∈ Li}, and (qi, ϕ, qj) ∈ ∆ if and only if [[ϕ]]Lj ⊆ Li for qi, qj ∈ Q
and a minterm ϕ of L.

Next, we present some properties of an s-NFA G = (B,Q,∆, I, F) generated
by an atomic cover {L1, . . . , Lk} of L. These results, originally presented for
NFAs and general covers in [14], also fit into the symbolic setting. Proofs can be
found in [14]; in the symbolic version, only minor adjustments are needed.

Proposition 7. The following properties hold for s-NFA G:

1. Lqi(G) ⊆ Li for every qi ∈ Q.
2. L(G) ⊆ L.

We note that because of Proposition 6, it holds for every pair Li, Lj of Def-
inition 1 that whenever the inclusion Lj ⊆ a−1Li holds for some a ∈ Σ, there
is a transition (qi, ϕ, qj) of G such that a ∈ [[ϕ]]. This property ensures that the
following proposition holds:

Proposition 8. The equality Lqi(G) = Li holds for every qi ∈ Q if and only if
a−1Li is a union of Lj’s for every Li and a ∈ Σ.

Next property easily follows from Proposition 8:

Proposition 9. If a−1Li is a union of Lj’s for every Li and a ∈ Σ, then G
accepts L.

A simple example of an atomic cover is the set A = {A1, . . . , Am} of atoms
of L, where Am is the final atom. We can define a symbolic version of the NFA
called the átomaton [1], as follows:

Definition 2. The symbolic átomaton of L is the s-NFA A = (B,Q,∆, I, {qm}),
where Q = {q1, . . . , qm}, I = {qi | Ai ⊆ L}, and (qi, ϕ, qj) ∈ ∆ if and only if
[[ϕ]]Aj ⊆ Ai for Ai, Aj ∈ A and a minterm ϕ of L.

It is known that for every atom Ai and a ∈ Σ, a−1Ai is a union of atoms [1].
Thus, by Proposition 8 it holds that Lqi(A) = Ai for every qi ∈ Q, and it follows
from Proposition 9 that L(A) = L. Also similarly to the classical case in [1], one
can see that the predicate-normalized version of AR is a minimal s-DFA of the
reverse language LR.

As another example of an atomic cover, consider the set K ′ = {K ′1, . . . ,K ′k}
of prime quotients of L, that is, those non-empty quotients of L which are not
unions of other quotients. Based on this cover, we define an s-NFA as follows:

Definition 3. The canonical symbolic residual finite state automaton (canon-
ical s-RFSA) of L is the s-NFA R = (B,Q,∆, I, F), where Q = {q1, . . . , qk},
I = {qi | K ′i ⊆ L}, and (qi, ϕ, qj) ∈ ∆ if and only if [[ϕ]]K ′j ⊆ K ′i for K ′i,K

′
j ∈ K ′

and a minterm ϕ of L.

9

Since every quotient of L is a union of some prime quotients of L, for every
prime quotient K ′i and a ∈ Σ, a−1K ′i is a union of prime quotients. In the same
way as in the example above, one can see that the right language of a state qi ∈ Q
is some prime quotient K ′i, and that L(R) = L. The classical NFA version of
R is known as the canonical residual finite state automaton [7] of a language.
Residual finite state automata (RFSAs) are NFAs where the languages of its
states are some residuals, that is, quotients of the language. Some properties of
RFSAs in the learning context have been studied in [8]. It would be interesting
to study symbolic versions of these automata as well.

6.1 Generating Minimal s-NFAs

We show that atomic covers and minterms of the language can be used to find
minimal s-NFAs. Our approach here is similar to the way of finding minimal
NFAs in [14].

Let N = (B,Q,∆, I, F) be a trim s-NFA accepting a symbolic regular lan-
guage L, with Q = {q1, . . . , qk}. For every state qi of N , we define a language
Ci =

⋂
Lqi

(N)⊆Kh
Kh as the intersection of all quotients of L which contain the

right language of qi as a subset. Clearly, the inclusion Lqi(N) ⊆ Ci holds. Since
every quotient is a union of atoms, Ci is also a union of atoms. Because the set
of right languages of the states of N obviously forms a cover for L, the set of
Ci’s has the same property. We note that there may be some states qi and qj of
N , such that qi 6= qj , but Ci = Cj . Let the set of distinct Ci’s be C.

Let GC = (B,QC , ∆C , IC , FC) be the s-NFA generated by the cover C for
the language L. We note that |QC | ≤ |Q|. Let π : Q → QC be the mapping
assigning to state qi of N , the state qCi

of GC , corresponding to Ci.

Proposition 10. The mapping π is a morphism from N into GC .

Proof. First, if qi ∈ I, then Lqi(N) ⊆ K1, where K1 = L. Since the inclusion
Ci ⊆ K1 holds, qCi is initial, that is, π(qi) ∈ IC .

Similarly, if qi ∈ F , then ε ∈ Lqi(N), implying that ε ∈ Ci, and thus qCi ∈
FC , that is, π(qi) ∈ FC .

We also show that for all states qi, qj ∈ Q and a ∈ Σ, if (qi, ϕ, qj) ∈ ∆ for
some ϕ such that a ∈ [[ϕ]], then there is some ϕ′ such that (π(qi), ϕ

′, π(qj)) ∈ ∆C

and a ∈ [[ϕ′]]. Let (qi, ϕ, qj) ∈ ∆ such that a ∈ [[ϕ]] for some qi, qj ∈ Q and a ∈ Σ.
Then it holds that Lqj (N) ⊆ a−1Lqi(N) ⊆ a−1Ci = a−1

⋂
Lqi

(N)⊆Kh
Kh =⋂

Lqi
(N)⊆Kh

a−1Kh. Therefore, Lqj (N) is a subset of some quotients a−1Kh

such that Lqi(N) ⊆ Kh, implying that Cj ⊆
⋂
Lqi

(N)⊆Kh
a−1Kh, that is, Cj ⊆

a−1Ci. Thus, aCj ⊆ Ci, and by Proposition 6, [[ϕ′]]Cj ⊆ Ci, where ϕ′ is a
minterm of L such that a ∈ [[ϕ′]]. It is implied that (qCi

, ϕ′, qCj
) ∈ ∆C , that is,

(π(qi), ϕ
′, π(qj)) ∈ ∆C .

We conclude that π is a morphism from N into GC . ut

Corollary 1. For every state qi of N , the inclusion Lqi(N) ⊆ LqCi
(GC) holds.

Also, L(GC) = L.

10

Proof. The morphism π : Q → QC implies that for every qi ∈ Q, the inclusion
Lqi(N) ⊆ LqCi

(GC) holds, and also that L(N) ⊆ L(GC) holds.
Since L(N) = L, and by Proposition 7, L(GC) ⊆ L, we conclude that

L(GC) = L. ut

Now, let Li be a union of some atoms of L. We define the maximized version
of Li to be the language max(Li) =

⋂
Li⊆Kh

Kh, that is, the intersection of all
quotients which contain Li as a subset. Since any quotient is a disjoint union of
atoms, max(Li) is a union of atoms.

Based on the results above, we can obtain a minimal s-NFA of L as follows: we
find an atomic cover {L1, . . . , Lk} of L, consisting of the minimal number of lan-
guages Li, then maximize Li’s to get the atomic cover {max(L1), . . . ,max(Lk)},
and generate an s-NFA G using this maximized cover. If G accepts L, then G is
a minimal s-NFA of L, otherwise it is not, and we try other covers in the order
of increasing size until we generate an s-NFA which accepts L. The first such
generated s-NFA is a minimal s-NFA for L. We note that a minimal cover and
a minimal s-NFA are not necessarily unique.

7 Generalization of Brzozowski’s Theorem

In this section we present a generalization of Theorem 1, which is similar to
its classical version in [1]. Namely, we characterize the class of s-NFAs for which
determinization produces a minimal s-DFA. The approach we take here is similar
to what was used in [13] to prove an analogous result about obtaining a canonical
RFSA.

First, we show the following proposition:

Proposition 11. Given an s-NFA N = (B,Q,∆, I, F), the left language of a
state s of ND is L{I},s(ND) =

⋂
q∈s LI,q(N) ∩

⋂
q 6∈s LI,q(N).

Proof. Let N = (B,Q,∆, I, F) be an s-NFA. Let s be a state of ND and let
w ∈ L{I},s(ND) be a word in the left language of s. We prove the proposition
by induction on the length of w. If w = ε, then s = I is the initial state of ND.
Also, since ε ∈ LI,q(N) for every q ∈ I, and ε 6∈ LI,q(N) for every q 6∈ I, it is

clear that ε ∈ L{I},s(ND) if and only if ε ∈
⋂
q∈s LI,q(N) ∩

⋂
q 6∈s LI,q(N).

Now, let w = ua with u ∈ Σ∗ and a ∈ Σ. Let us assume that u ∈ L{I},s′(ND)

holds for a state s′ of ND if and only if u ∈
⋂
q∈s′ LI,q(N) ∩

⋂
q 6∈s′ LI,q(N). If

w ∈ L{I},s(ND), then there is a state s′ of ND, such that u ∈ L{I},s′(ND)
and there is a transition (s′, ϕs′,s, s) in ND with a ∈ [[ϕs′,s]]. According to
how ND is constructed, ϕs′,s = (

∧
q∈s ϕs′,q) ∧ (

∧
q∈Ss′\s

¬ϕs′,q), where ϕs′,q =∨
(p,ϕ,q)∈∆,p∈s′ ϕ and Ss′ is the set of states q of N such that there is a transi-

tion from some state p ∈ s′ to q. Since by the induction assumption u ∈ LI,q(N)
holds for q ∈ s′ and u 6∈ LI,q(N) holds for q 6∈ s′, it is clear that ua ∈ LI,q(N)
holds for q ∈ s and ua 6∈ LI,q(N) holds for q 6∈ s. This is equivalent to that

ua ∈
⋂
q∈s LI,q(N) ∩

⋂
q 6∈s LI,q(N). ut

11

Now, let us consider the minimal s-DFA D = (B,S, Γ, {s1}, Sf) of a symbolic
regular language L, with a state set S = {s1, . . . , sn}. Let Li = L{s1},si(D) be
the left language of a state si, for i = 1, . . . , n. It is easy to see that Li ∩Lj = ∅
if si 6= sj . Also, it is clear that for any s-DFA D′ of L, there is a one-to-many
correspondence between the Li’s and the states of D′, such that every Li is the
union of the left languages of the corresponding states of D′. We note that only
if D′ is minimal, this correspondence is one-to-one.

The following proposition holds:

Proposition 12. For an s-NFA N , ND is minimal if and only if every left
language of N is a union of Li’s.

Proof. Let N = (B,Q,∆, I, F) be an s-NFA such that its determinized version
ND is a minimal s-DFA. Then for any state si of ND, the left language of si
is Li. Suppose that there is a state qj of N such that its left language is not a
union of Li’s. That is, for some word u ∈ Lh, u ∈ LI,qj (N), but Lh 6⊆ LI,qj (N).
Let su be a state of ND such that u ∈ L{I},su(ND). Since ND is minimal, we
know that L{I},su(ND) = Lh. By Proposition 11, we also know that qj ∈ su
and L{I},su(ND) ⊆ LI,qj (N). Therefore the inclusion Lh ⊆ LI,qj (N) holds, a
contradiction.

Conversely, let all the left languages of N be unions of Li’s. Since by Proposi-
tion 11 any left language of ND is a Boolean combination of some left languages
of N , and because it is obvious that any left language of ND is a subset of some
Li, we conclude that the left languages of ND are exactly Li’s. Thus, ND is
minimal. ut

Similarly as in [1], we say that an s-NFA N = (B,Q,∆, I, F) is atomic if for
every q ∈ Q, Lq(N) is a union of atoms of L(N).

Now we can state the following theorem:

Theorem 2. For any s-NFA N , ND is minimal if and only if NR is atomic.

Proof. By properties of the symbolic átomaton (see Section 6), atoms of a lan-
guage are equal to the reversed left languages of the states of a minimal s-DFA of
the reverse language. Therefore, NR is atomic if and only if every left language
of N is a union of Li’s. We conclude by Proposition 12 that ND is minimal if
and only if NR is atomic. ut

8 Related and Future Work

The work in [12] discusses the use of symbolic regular expressions over large
but finite alphabets in the context of using regular expression derivatives [3] for
matching. The paper does not use minterms to create predicates but a regu-
lar expression derivative induced equivalence relation over characters to create
predicates. The paper states that in general it is not possible to compute such
predicates without doing work that depends linearly on the size of the alphabet.
This is clearly not possible if the alphabet is infinite. An interesting future work
would be to extend the derivative based approach to symbolic regular expressions
over arbitrary symbolic alphabets.

12

References

1. Brzozowski, J., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539 (2014)
13–27

2. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite
events. In: Proceedings of the Symposium on Mathematical Theory of Automata.
Volume 12 of MRI Symposia Series, Polytechnic Press, Polytechnic Institute of
Brooklyn, N.Y. (1963) 529–561

3. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4) (1964) 481–494
4. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In:

Computer Aided Verification, 29th International Conference (CAV 2017)
5. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: The 41st Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014. (2014) 541–554

6. D’Antoni, L., Veanes, M.: Forward bisimulations for nondeterministic symbolic
finite automata. In: Tools and Algorithms for the Construction and Analysis of
Systems - 23rd International Conference, TACAS 2017, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part I. (2017) 518–534

7. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fund. Inform.
51 (2002) 339–368

8. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. Theor.
Comput. Sci. 313(2) (2004) 267–294

9. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Tools and Algorithms for
the Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I. (2017)
173–189

10. Iván, S.: Complexity of atoms, combinatorially. Inform. Process. Lett. 116 (2016)
356–360

11. Keil, M., Thiemann, P.: Symbolic solving of extended regular expression inequali-
ties. In: 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi,
India. (2014) 175–186

12. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined. Jour-
nal of Functional Programming 19(2) (2009) 173–190

13. Tamm, H.: Generalization of the double-reversal method of finding a canonical
residual finite state automaton. In: Descriptional Complexity of Formal Systems
- 17th International Workshop, DCFS 2015, Waterloo, ON, Canada, June 25-27,
2015. Proceedings. (2015) 268–279

14. Tamm, H.: New interpretation and generalization of the Kameda-Weiner method.
In: 43rd Int. Colloq. on Automata, Languages, and Programming (ICALP 2016).
Volume 55 of Leibniz Int. Proc. in Informatics (LIPIcs), Dagstuhl, Germany,
Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2016) 116:1–116:12

15. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6) (1968)
419–422

16. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic regular expression ex-
plorer. In: Third International Conference on Software Testing, Verification and
Validation, ICST 2010, IEEE Computer Society (2010) 498–507

17. Watson, B.W.: A taxonomy of finite automata construction algorithms. Computing
science report 93/43, Eindhoven University of Technology (1995)

18. Watson, B.W.: Implementing and using finite automata toolkits. In: Extended
finite state models of language, Cambridge University Press (1999) 19–36

13

