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ABSTRACT

Automatic extraction of structured records from inconsis-
tently formatted lists on the web is challenging: different
lists present disparate sets of attributes with variations in
the ordering of attributes; many lists contain additional at-
tributes and noise that can confuse the extraction process;
and formatting within a list may be inconsistent due to miss-
ing attributes or manual formatting on some sites.

We present a novel solution to this extraction problem
that is based on ) collective extraction from multiple lists si-
multaneously and i) careful exploitation of a small database
of seed entities. Our approach addresses the layout ho-
mogeneity within the individual lists, content redundancy
across some snippets from different sources, and the noisy at-
tribute rendering process. We experimentally evaluate vari-
ants of this algorithm on real world data sets and show that
our approach is a promising direction for extraction from
noisy lists, requiring mild and thus inexpensive supervision
suitable for extraction from the tail of the web.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining

General Terms
Algorithms

1. INTRODUCTION

Content portals powered by databases of extracted data
are now in wide use for a number of domains [10, 18]. As
such portals compete for audience engagement, each will
naturally seek to enhance its database with data from lists
found on a variety of smaller, structurally diverse sites. This
is partially because the smaller sites are often more author-
itative, but also because larger sites are often competitors.
In this paper we focus on the extraction challenges faced on
such smaller sites; in particular, those that contain lists of
entity information; for example, lists of businesses, books,
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movies, etc. While some of these lists are script-generated,
some are not, and traditional extraction from these lists via
site-specific supervision is cost-prohibitive [5, 13].

To simplify the problem, we assume that lists have been
correctly segmented into snippets by an unsupervised tech-
nique (see, e.g., [2]) and that each snippet contains at least
some attribute data from a given entity schema. In this con-
text, we informally define the Snippet Extraction Problem as:
Segment each snippet, and label the resulting segments with
the correct attribute label, or Other if none applies. Given
the assumption that snippets contain exactly one record,
correct attribute labeling yields entity extraction. We now
illustrate the snippet extraction problem with an example:

Example. Figure 1 shows fragments of three web pages
with information about schools in California. Across the
pages, information about a variety of attributes is available,
including officialURL, name, city, state, phone, team and
address. Fach of these three web-pages have been segmented
to yield snippets (separated by horizontal lines), each asso-
ciated with a single school.

An example of snwippet to1, correctly segmented and la-
beled, is shown between sources 2 and 3 in Figure 1. Note
that portions of the snippet not corresponding to the schema
have the distinguished label ‘Other”.

Given the snippet extraction problem and the requirement
of little or no supervision, two classes of techniques might
generally be applied. First, an unsupervised wrapper (e.g. [1,
3, 9, 11]) technique might be used to further segment each
snippet into likely attribute segments, and to align these
segments across snippets. These techniques are particularly
effective when strong HTML or punctuation signal is present
on the site. Recently, these techniques have been general-
ized to collectively segment multiple sites [7]. Note that by
segmenting and aligning snippets, these techniques fall short
of full Snippet Extraction since labeling is not done. Second,
database supervision [5, 12, 13, 15, 17] might be used to la-
bel some snippets on the site using a seed entity database,
and a sequential model learned from these examples. This
model can then be applied to segment and label, usually
skipping the alignment step. Unlike unsupervised wrappers,
databases supervision may also leverage sequential signal,
for example, that certain attribute orderings are used on a
particular site.

Challenges Two challenges arise when state-of-the-art tech-
niques are applied to diverse and noisy web data:

1. Attribute boundaries from HTML or punctuation are
often inconsistent or missing, leading to poor segmen-
tation (and thus alignment and labeling errors).



Source 1 Entity Attributes
t1,1 | @ 42nd Street Elementary School- www.42StSchool.com — Los Angeles | e3 SFFicialURL
t1,2 | @ Collins Elementary-www.collinselementary.com— Cupertino eo ame
t1,3 | ® Z Zamorano Elementary School — www.zamorano.edu— San Diego eq addr

city

Source 2 Entity st‘:ate
t2,1 | T www.lincolnHS.edu, Lincoln HS — Pirates — (650) 343-2321 — (next game Wednesday) | es Z1p
t2.2 | T www.smmm.com, Memphis MS — Grizzlies — (408) 330-1247 — San Mateo €6 phone
12,3 t www.montavista.edu, Monta Vista HS — Matadors — (408) 366-7777 — Santa Clara el team

Source 3 Entity
t3,1 | * Collins Cougars — L. P. Collins Elementary — www.collinselementary.com — Cupertino, CA - 408 366-5555 | e2
t3,2 | * Monta Vista Matadors — Monta Vista High — 21840 McClellan Rd - Cupertina, CA - 408 366-7777 el
t3,3 | * Cupertino Union School District — www.CupertinoSD.edu — 10301 Vista Drive - Cupertino, CA er
12,1, correctly segmented and labeled
1 | www.lincolnHS.edu | , | Lincoln HS | — | Pirates | — | (650) 343-2321 | — (next game on Wednesday)
officialURL name team phone Other
Figure 1: Example sources and snippets.
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2. Confusing attributes or junk segments cause a variety
of problems. For example, consider team name and
name, as shown in Source 3 of Figure 1, if team name
is not in the extractor’s schema then it can cause false
matches to name. This can cause trouble for both at-
tribute model-based techniques [7] and automatic la-
beling [12, 13].

Obviously these challenges interact, and in conjunction can
lead to extremely difficult extraction scenarios.

Collie
In this paper, we introduce COLLIE, a novel system devel-
oped at Yahoo! for snippet extraction. The goals of COLLIE
are: 1) To work flexibly with a wide variety of HTML and
non-HTML data sets, even with poor signal for attribute
separation, i) To improve quality in the presence of confus-
ing junk segments, and %) To work with no explicit super-
vision, just a small database of seed entities.

Following [7], COLLIE can collectively extract from multiple
sites, and introduces two key improvements over prior work:

1. We provide a collective extraction technique that lever-
ages sequential models as in [13], but we are signifi-
cantly more resilient to noisy data.

2. We make explicit use of (approximate) entity match
information throughout the process, rather than using
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13]. For example, in Figure 1, snippets ¢1,2 and t3,1
both correspond to entity e2, and it may be possible
to identify this match prior to extracting information
from ¢1,2 and ¢3,1. In particular, the match information
is leveraged in our adaptation of Viterbi decoding for
sequential labeling based on a hidden Markov model.

3. Rather than proceeding source by source as in [11, 12,
13] or using all sources at once as in [7], we carefully
maintain active sets of sources, entities and attributes.
This helps us cope with poor initial knowledge of a
particular site or entity, especially when sites are noisy.

Figure 2 outlines our extraction algorithm. The three paral-
lelograms are key initialization steps of the algorithm: first
a matching of snippets is found, using an algorithm like [8].
Second, an unsupervised segmentation algorithm is applied
([16] and [7]). Third, our various models for entities, at-
tributes and sources are initialized based on the seed entities
and the unsupervised segmentation. Once initialization is
complete, we iteratively perform four steps: 1) re-segment
and relabel snippets, 2) update models of sources, 3) re-
segment and relabel again, then J) update entity models.
After each iteration through these steps, our set of active
entities, snippets and sources is revised. This is critical to
avoiding garbage labelings in noisy sources.

We experimentally evaluate COLLIE against two baseline
algorithms, and the recent wwT [13] algorithm on a number
of challenging, real data sets taken from “Bestseller” book
lists on the web. Our experimental evaluation highlights the
importance of leveraging a variety of cues and collective ex-
traction from multiple sources in order to extract from noisy
data with low supervision. COLLIE achieves good attribute
segmentation and labeling significantly better (achieving at
least 50% error reduction in labeling on average) than the
state of the art. We show that COLLIE is able to tolerate at-
tribute confusion by leveraging sequential models, and con-
fusing non-attribute junk segments by estimating the com-
plete set of attributes presented on each source. Finally,
while COLLIE assumes perfect knowledge of which snippets
are from the same entity, we show that COLLIE can also lever-
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Figure 4: Source-snippet-entity associations.

age imperfect matching. In fact, we show that approximate
matching schemes that match snippets with very similar at-
tribute values can actually boost COLLIE’s performance over
perfect entity matching.

In summary, COLLIE is a promising new direction for col-
lective extraction of structured entity records from a large
number of small web sites, with zero per-site supervision,
and even limited supervision in the form of seed entities.
Outline: In Section 2, we formally state the multi-site at-
tribute extraction problem. In Section 3 we introduce the
component attribute and sequential models needed in COL-
LIE. In Section 4, we present our detailed algorithm. In
Section 5, we present our experimental results. We discuss
related work in Section 6, and conclude in Section 7.

2. PROBLEM DEFINITION

In this section, we introduce sufficient notation to formally
define the collective record extraction problem. Sets are rep-
resented using upper-case calligraphic letters (e.g., X') with
the corresponding lower case letter (e.g., ) denoting an el-
ement of X and Ny the cardinality.

Schema. Let A denote a fixed set of attributes that should
be recovered by extraction. In the running example, each
entity has seven such attributes — officialURL, name, city,
state, phone, and address. Each attribute a € A takes
values from a domain denoted by dom(a). For example, the
attribute a1 = officialURL takes values only among valid
URLSs while a7 = state takes string values that refer to one
among the fifty US states.

Seed Entities. Let £ denote the set of entities. Each entity
e € & is associated with a unique attribute value e.a for each
attribute a € A from dom(a) or a distinguished value null
(which indicates that the attribute does not exist for that
entity). Let Escea C € denote a set of seed entities whose
attribute values are already known prior to the extraction.
Figure 3 shows two seed entities for the scenario described
in the running example.

Snippets. Let 7 be a set of text or HTML snippets each
containing information on an entity of interest along with
some potentially irrelevant information. Each snippet t € 7
is modeled as a sequence of |t| tokens. We use t[z] to refer
to the z'" token in t, and t[z1 : x|, x2 > x1 to refer to a
subsequence of tokens in ¢, t[z1] + t[x1 + 1] + ... + t[ze — 1].
Example snippets are shown in Figure 1.
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Sources. Each snippet t € 7 is derived from a source s =
S(t). Abusing notation, we use S(7) or simply S to denote
the set of all sources from which snippets 7 are drawn, and
7 (s) to denote the snippets from source s, i.e., {t|S(t) = s}.
Figure 1 shows a set of snippets derived from three sources.
In this example, each snippet embeds information about a
school in the United States.

Segmentation. A segmentation function y maps snippets
to a sequence of increasing integers, x(t) = (z1, T2, ..., Z|yx)|)-

x breaks ¢ into |x(t)|—1 subsequences, t[x, : Tr41], [r]‘f‘(t)‘_l
where 1 = 1 and x| = |t|. We overload [] to define
t[x()[r]] as tlxr : xr41]. Figure 4 shows snippet ¢t1,2 =“L. P.
Collins Elementary - Cupertino, CA 1 408 366-5555" with
tokens being partitioned into 4 segments corresponding to
X(t1»2) = {17 5,6,7,8,9, 13}7 and X(t1»2)[4] = (7 : 8)
Labels. Let B be a set of labels that includes the attributes
in A, and other auxiliary labels helpful for extraction (e.g.,
attribute separators and unknown attributes). In particu-
lar, let B; C B be a set of labels that may be assigned to
segments on site s;, a non-empty subset of which are from
A. The remaining labels in B; are assigned to punctuation
and other separators, junk segments, unknown attributes,
etc. In addition B; always contains Other.

Labeling. A labeling, I(t), maps a snippet ¢ to a function
that maps segments to labels. Usually, I(¢)(-) is defined only
on the sequences defined by a segmentation function y, in
which case [(t) may be subscripted by I, (). If ¢t is from
source s;, then the range of I(t) is B;. For example, in Fig-
ure 4, the first two segments of snippet ¢1,2 are labeled as
bs = a1 = name, by = other: bg = a3z = city respectively,
so we would write Iy (¢)[x(¢)[1]] = a1. Since this notation is
cumbersome, the () may be omitted following [ or x when
clear from context.

The Collective Record Extraction Problem Given a
set of snippets 7, over sources S(7) along with A, B, and
Eseed as defined above, to produce a solution (x,ly) that
agrees with the correct segmentation and labeling, up to a
given equivalence (such as white space).

3. COMPONENTS

In this section, we introduce our base algorithms for seg-
mentation, labeling and snippet matching.

3.1 Attribute and Field Models

Content models are widely used [1, 4, 5, 7, 11] to esti-
mate the two relationships between segments (t[z : y]) and
labels, b;. First, we may wish to estimate P(l | t[x : y]),
the probability that a label applies given the contents of the
segment (classification), and second, we may wish to esti-
mate P(t[z : y] | b;), the probability that the value t[x : y]
appears in a segment correctly labeled b; (emission).
Attribute Models For each attribute that appears in Egced,
we create a model {am : am € A}. This model is not up-
dated. We use Py (t[z : y] | am) and Pa(am | t[z : y]) to indi-
cate the emission and classification probabilities estimated
from a,,, respectively.

Source Field Models For each label b, ; € B;, we define
Bm,i as a content model of b,,;. The (,,,; models always
come from a segmentation and alignment of active snippets
on a source s;. We describe what these models correspond
to in more detail in the next section. We use Ps(t[x : y] | b;)



Seed Entities
eid | ay : officialURL ag : name az : city a4 : state | as : phone ag @ addr
el www.montavista.edu Monta Vista High School Cupertino | CA 408366777 21840 McClellan Rd
e2 www.collinselementary.com | Collins Elementary School | Cupertino | CA 4083665555 | null

Figure 3: A set of seed entities

or Ps(b; | t[z : y]) to indicate the emission and classification
probabilities estimated from (3,,, respectively.

Implementation A variety of techniques have been used
for content models including bag-of-words [8], ngram lan-
guage models [5, 11], statistical feature based models [7],
and HMM based models [1, 4]. We implement our content
models by combining (a) a bag of words model Py, (b) Pois-
son models for character and token lengths P», and (c) a
few multinomial models capturing different binary features,
such as presence/absence of alphabets, digits, punctuation,
and html tags, Ps. The models are smoothed appropriately
to account for unseen values. Finally, the emission proba-
bility P(t[z : y] | bi) is computed as [], P/**, with manually
tuned weights (we used a uniform assignment). The imple-
mentation of P(b; | t[x : y]) is discussed in the next section.

3.2 Entity Models

Another way to estimate the emission probability arises
when an entity, e;, is known for the snippet, ¢. In this case,
we use the token-level Jaccard similarity between e;.a,, and
a segment t[z : y] as an estimate of P(t[z : y]lam). In
particular, if jac(z1, z2) represents the ratio of intersecting
tokens between strings z; and z2 to total tokens in both,
then we estimate P.(t[z : y]|am) oc e/2¢(@1:72)

3.3 Labeling with a Sequential Model

With each source s;, we associate a first order Markov
model that models the distribution over the segment la-
bellings of the snippets in 7 (s;). This model is parame-
terized by (s, A;) as follows:

o mi[m], [m]} ®" denote the probability that the label of
the first segment for any snippet in 7 (s;) iS bps.

o Alma][ma], [ma]y " [ma]t®**" denotes the conditional

probability of label by, ; following label b, ; in a snip-

pet labeling. Note that by ;41 is interpreted as a

dummy terminal state.

Given a segmentation x(t) for a snippet ¢, the probability of
observing the snippet ¢ can be written as

D (PHI(), My, x) - POU(E) s, Ai))(1)
1(t)

[x(t)]

I Pex@®rn | i)

[x(#)]

PU(®)lmi N =mll@] - [T Aall@)lr = LOF3)

P(t|X7 Mi7 Ty AZ)

P(t|i(t), Mi, x) )

where, I(t)[|x(t)|] = terminal.

We use the standard Viterbi [21] algorithm in order to
find the labeling [, that maximizes P(t|x, M;, 7, Ai), the
probability of generating the snippet ¢ given segmentation
X. As input, Viterbi takes a given a segmentation x(t),
(mi, \i) and an emission probability function that estimates
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Algorithm 1 COLLECTIVE EXTRACTION ALGORITHM

Input: Schema A, set of text snippets 7 over sources S(7),
seed entity set Esup

Output: Segmentation and labeling (x,ly) of snip-
pets in 7, Entity attributes {er.am am € A,er €
&t

1: INITENTITIESANDMODELS

: INITSNIPPETTOENTITYMAPPING

: SEGMENTSNIPPETS

while repeat till convergence do
RELABELACTIVESNIPPETS
UPDATESOURCETEMPLATES
RELABELACTIVESNIPPETS
UPDATEENTITYMODELS

: end while

© PN W

P(t[x(t)[r]] | bm,i), with by ; drawn from a family of labels
B;. The way the emission probability is computed in COLLIE
is one of our contributions, and it carefully depends on the
currently active snippets, entities, where in most prior work
only the attribute models, a.,, are used, not source-specific
“yunk” models (,,, nor entity-specific models. The former is
critical for dealing with noisy sites, and the latter is critical
for capitalizing on small Eseeq.

3.4 Active Sets

Given a key goal of working with very low supervision,
we assume that no snippets have been labeled, and that in
general Esceq is small. Given these constraints, very few
snippets will correspond to entities in Eseeq, and there may
be some sources for which no snippets are associated with
an entity in Eseeq. To avoid estimating field models, transi-
tion probabilities, or entity values with insufficient evidence,
we limit inference to active entities, and carefully grow this
set as the algorithm progresses. We maintain sets of active
snippets, Tgctive, SOUrces Sactive and entities Eqctive-

4. EXTRACTION ALGORITHM

In this section, we present the COLLIE algorithm for the
snippet extraction problem. The algorithm takes as input
the set of snippets 7 and the seed set of entities Eseeq, and
outputs a pair (x,ly) that map each snippet ¢t € 7 to a seg-
mentation, x(¢) and a labeling ,(¢). Algorithm 1 provides
an overview of the key steps (also illustrated in Fig 2), and
the steps are described in detail in this section.

4.1 Initialization

The algorithm begins by initializing entities, models, snip-
pet to entity mappings, and by performing an unsupervised
segmentation of each source.

4.1.1 initEntitiesAndModels

In this step, a variety of variables and model parameters
are initialized, as follows.



Active Sets E,ctive is initialized to Eseeq, and Toetive is ini-
tialized to {t|n(t) € Eactive} (snippets mentioning active ob-
jects), and Sactive to 0.

Global Models First, the entity attribute values, €;.am,, are
initialized using the attribute values in Esccq, and the global
models a,, are initialized with the a,, values for each e;.
Sequential Models The parameters (hr,hy) that deter-
mine the Dirichlet priors for the source-specific initial la-
bel and transition distributions are initialized using domain
knowledge (e.g., name is the first attribute, state follows city)
where available, and are otherwise uniformly initialized.

Algorithm 2 RELABELACTIVESNIPPETS
1: ﬂctive — {t : n(t) € gactive V S(t) € Sactive}
2: for t S %ctive do
3 if S(t) S Sactive then
4 (It, xt) < VITERBINEIGHBORHOOD(t)
5 else
6: (I, x¢t) < DIRECTLABEL(¢,n(t))
7
8
9:

end if

l(t) - lt(t)§ X(t) - Xt(t)
end for

is then refined and labeled using our probabilistic model.
To be specific, for each source s;, we obtain a segmenta-
tion x2(-) (allowing for empty segments) of the snippets in
7 (s;) such that |x?(¢)| is invariant across all snippets in s;
and the aligned segments (i.e., 7" segments of all snippets)
are maximally similar. Currently, there exist many such
techniques [7, 16, 22] and we use both [7] and [16] in our
experiments.

4.2 Iterative Inference

The main portion of the algorithm alternates between up-
dating the source template model (the B; labels and (i, \;)
transition probabilities) and the entity models (the current
estimates for e;.a,, for entities not in Eseeq). After each such
update, either to templates or entity models, RELABELAC-
TIVESNIPPETS is called. This is actually required, since both
the entity models and source templates are updated from
the active snippets and their current estimated segmenta-
tion and labeling. The whole process is repeated until con-
vergence; i.e., when the total change to the source templates
and entity models is below a low threshold.?

Algorithm 3 DIRECTLABEL(t, e)

1: 4, < new labeling ;

2: for r € x9(t),S(t) = s; do

3: m" «— argmax,, P.(t[x(t)[r]]|m) // object model

4. L()[r] — m™;

5: end for

6: // Remove multiple labels

7: for r € x9(t) do

8 m—I(t)[r]

9:  if m exists as label of any other segment r’ € x9(¢)
with higher score then

10: l¢(t)[r] < OTHER

11:  end if

12: end for

13: return (I, x?Y); // doesn’t change X

4.1.2  initSnippetToEntityMapping

An important benefit of our collective extraction approach
relative to previous work on synchronized extraction [7] is
the ability to effectively exploit overlap in entities across
sources. To do so, we need to first infer the mapping, 7,
from snippets to entities. This is done in two steps, given
a similarity function ~ that is defined on both (a) pairs of
snippets (t1 ~ t2) (b) pairs consisting of one snippet and
one entity (t1 ~ e) (see [8] for simple but effective snippet
matching techniques). For a snippet ¢, let e; be the entity
that maximizes ¢ ~ e;. If this match is over a threshold,
then we set n(t) <+ e;. However, due to the assumption that
Nsup 18 small, the bulk of entities will not be assigned, and
for the remaining snippets, they are clustered using ~ with
the constraint that two snippets from the same site are not
in the same cluster. A new “dummy entity” e. is created,
and for each cluster ¢, and for each ¢ in ¢, n(t) < ec.

4.1.3 segmentSnippets

We first perform collective unsupervised segmentation of
snippets within each source, and the resulting segmentation

Algorithm 4 VITERBINEIGHBORHOOD (t)

Xneigh = {x(t)} // initialize neighborhood
for r € x(t) do
X' (t) « x(t) with segment r and r + 1 merged
Xneigh — Xneigh U {X/(t)}
for p € x(¢)[r]... x(¢)[r + 1] each token in x(t) do
X' (t) «— x(t) with segment r split after token p
Xneigh — Xneigh U {Xl(t)}
// find best segmentation amongst Xyeigh
return argmax, «,) VITERBILABEL (X (¢),COLLIEEMISSION)
end for
end for

Algorithm 5 COLLIEEMISSION (t[z : y], bm,:)

Input: segment ¢[z : y] of a snippet, and candidate label b;
Output: P(t[x : y]|bm,:)
if b; is a non-attribute model then
return Pg(t[z : y]|bm,i) using B,
else
let an, be the attribute corresponding to b, ;
p = Paltlr : y)lam) ™ - Pa(tla : y]lbm) >
if n(t) € Eactive then
p—p- Pe(t[z : yllam)
end if
return p
end if

relabelActiveSnippets (Algorithm 2) As a first step, the
active set of snippets is set to snippets that are either a) part
of active sources or b) associated by n with an active entity.
Next, in order to relabel active snippets with the latest entity
and source-template information, we iterate through each
snippet as shown in Algorithm 2. For sites that are inactive,
we call DIRECTLABEL, which uses entity models P. to label
columns based on the initial aligned segmentation ?.

With reasonably connectivity, we find that our algorithm
quickly converges to a solution in about 5-10 iterations.



Algorithm 6 UPDATELABELPOOL

Algorithm 7 UPDATESOURCETEMPLATES

Input: source s;, snippets T'= 7 (s;)
Output: new current label pool, B;, for s;, training label
function lmp
1: B0
n«— 0 // junk labels
s L—1(t)VteT
: Xi < ALIGN-NW(L)
: for each column r in alignment of y; do
if r is an attribute a,, then
add a,, to B
vtETltmp(t) [7“] = am
else
add new state b, to B
vtETltmp(t) [7“] == bn
n++
end if
end for
return B, limp

© XD W

10:
11:
12:
13:
14:
15:

For active sites, the re-labeling is more sophisticated, and
is accomplished by VITERBINEIGHBORHOOD, shown in Algo-
rithm 4. The idea of this routine, following [7], is to perform
a limited search around the current estimated segmentation
of t, x(t) (but [7] does not use a sequential model at all).
This involves all new segmentations that can be formed by
merging a single adjacent pair of segments, or splitting a
single existing segment. Among the resulting candidate seg-
mentations, the best labeling is chosen using the standard
Viterbi decoding algorithm [21], but with using a novel emis-
sion probability shown in Algorithm 5. The idea is to care-
fully trade off between the use of attribute models from the
initial seed set of entities Esceq, unsupervised label models,
and information from known entity correspondences.
updateSourceTemplates (Algorithm 7) This routine up-
dates two aspects of the template for a source, s;. First,
the set of source-specific labels, B;, is re-estimated. Sec-
ond, the Markov parameters (m;, A;) are updated. The label
set B; is computed by the subroutine UPDATELABELPOOL,
shown in Algorithm 6. This routine actually embodies the
key subtleties of the template update logic. First, the set
of label sequences from all active snippets on the source are
aligned by Needleman-Wunsch [16], with the constraint that
segments having two different attribute labels cannot be in
the same column. The result stored in X;, and due to the
alignment, the r’th entry in each segment is expected to re-
ceive the same label — columns that contain at least one at-
tribute label ¢, are given that label; other columns are given
a distinct source specific label. This generates a temporary
labeling, l1mp of all the active snippets of s;. Once UPDATE-
LABELPoOOL finishes, lim; is used to train an HMM, and the
parameters of that HMM are stored as the new values of
(mi, Ai). The use of lymp only for training is in fact critical
— the assumptions made by the alignment routine are too
strong to actually use for labeling. By using it for training,
the next RELABELACTIVESNIPPETS will be influenced more
softly, also allowing the entity models will also be taken into
account. Finally the source is added to Sactive-

Updating Entity Parameters As in the case of sources,
in each iteration, any entity that is associated with at least
one active snippet is added to Egctive. For each entity ey
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1: (Bi, lymp) < UPDATELABELPOOL (si, 7 (s;))
2: if first call to UPDATESOURCETEMPLATES for s; then
3:  ignore lmp, set (i, A;) to uniform probabilities over
B
else
HMM <« hidden Markov model with states B;
train HM M with lymp
(pis, Ai) < model from HM M
add Sj to Sactive
end if

and attribute an, € A, we first collect the snippet fragments
with label a,, and fairly high normalized marginal likelihood
values, and pick the fragment which has the highest average
Jaccard distance to all other choices to be ex.am.

4.3 Algorithm Efficiency

We now briefly discuss the computational complexity of
our algorithm. Let Np denote the maximum number of
labels across the sources and L.ne,; the maximum snippet
length. The initialization costs are linear in the size of
the dataset and the data structures required for model, i.e.,
O((Ns + 1)(NB + 1) Limas + Ns - N + Ng - Ng). Snippet
labeling using the Viterbi algorithm as well as the marginal
probability computation has a complexity that is O(|t|*-N3)
for a snippet t. Updating the source attribute ordering pro-
files requires at most O(N3) operations for each source. The
estimation of the entity attribute values, on the other hand,
is linear in the number of the candidate snippet fragments
(due to the simplification via the mean model), which is usu-
ally fairly small (< 10). Therefore, the total time complexity
of our algorithm for a single iteration is given by O(|Zactive]
Lfmm . N]23 + NT . Lmaac + |Sactive| : N]23 + |5active| : NA) In
the beginning, the number of active snippets,entities and
sources are fairly small and eventually cover the entire con-
nected portion of the entity-snippet-source graph. With rea-
sonably connectivity, we find that our algorithm converges
quickly to a solution (in about 5-10 iterations).

S. EXPERIMENTAL EVALUATION

In this section, we report on comparing COLLIE to state-of-
the art techniques on a collective extraction task involving
real web datasets. After describing our experimental set up,
we show the following results:

e On a number of real list pages, our algorithm, COL-
LIE, achieves good attribute segmentation and labeling
even with a small seed set of examples entities in Esceq.

e Baselines that use unsupervised segmentation fail to
accurately label the segments in the presence of con-
fusing attributes. Sequential models (like wwT) fail
to correctly segment snippets in the presence of ex-
tra junk attributes. Our algorithms are able to over-
come both these challenges as evidenced by COLLIE’s
superior performance over unsupervised segmentation
baselines as well as WwWT.

e Our collective inference algorithm shows gain in per-
formance compared to a variant of our algorithm that
segments and labels each source independently.
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Figure 5: Performance of COLLIE and competing algorithms on HTML-1-b (left), HTML-S2 (middle) and

HTML-S3 (right), with increasing seed size parameter.

e Finally, we study the impact of approximate entity
match information utilized by COLLIE. We experimen-
tally show that approximate matching schemes that
ensure that matching snippets have very similar at-
tribute values boost COLLIE’s performance.

5.1 Experimental Setup

Dataset. We use challenging datasets consisting of real
HTML web pages for our experiments. Each of these pages
contains a list of bestselling books from different sites — (a)
amazon.com, (bn) barnesandnobles.com, (p) powells.com,
(b) bookweb.org?, (pw) publishersweekly.com, (u) usato-
day.com. Text snippets were extracted from these HTML
pages using an unsupervised list segmentation algorithm [2].
Snippets from each source contained a subset of attributes
from bookname, author_list, list_price, publisher, isbn, excerpt,
type in addition to other site-specific fields. Moreover, snip-
pets from a few of the sources (e.g., amazon.com) had strong
HTML structure, a few had some inline HTML formatting
(e.g., a <strong> tag around the book title), while others
were plain textual snippets with little or no delimiters be-
tween attributes. Finally, every source had some internal
variance in the number of attributes on snippets.

Since all the pages describe bestselling books, some books
appear on multiple sources. We associated objectIDs with
snippets (thus “matching” snippets across sources) in three
ways — perfect, bookname and author. Snippets share the
same perfect ID if they contain information about exactly
the same entity. They share the same bookname (author) ID
if they have the same bookname (author, respectively).

Our extraction schema is A = {bookname, author_list,
list_price, publisher}. Egceq is generated by manually ex-
tracting attributes from an s% of the records on one of the
sources, which we call the database source. This is reason-
able, since one may wish to find overlapping sources based
on database content, or to seed extraction with a few records

2 American Booksellers Association

from one source to supervise further extraction. We call s
as seed size parameter.

We will use 3 variants of this dataset. HTIML-1-x consists
of a single source (x € {a,b,bn,p,pw,u}), and seed entities
are picked from the same source. HTML-S2 consists of 111
snippets from 4 sources (b, p, pw, u) and mentions 94 unique
books. Eseeq is chosen by picking s% of the 16 entities from
b. HTML-S3 consists of 220 snippets from 5 sources (a,
bn, p, pw,u) mentioning a total of 159 books; here Esceq is
chosen as a s% fraction of 30 entities listed on u. Out of the
94 books mentioned HTML-S2, 14 appear on more than
one source. Similarly for HTML-S3, 38 out of the 159
books appear on multiple sources.

FEvaluation. All snippets were semi-automatically segmented
and labeled, then manually reviewed to generate ground
truth. We evaluate the output of our algorithms using pre-
cision and recall metrics defined as follows. For each snippet
t, let St denote the set of segments which have been labeled
by an algorithm with some a € A. Similarly, let G¢ denote
the set of ground truth segments labeled with some a € A.
A segment in x € S; is considered a true positive if its la-
bel and string value matches the ground truth segment x4
with the same attribute label (we ignore any leading and
trailing white space and html tags); such segments are given
a score score(x) = 1. Segments that intersect the ground
truth segment, but miss or add some tokens are scored as

number of tokens appear in z and x4

score(x) = (4)

number of tokens appear in x or x,

We now define precision and recall as follows.

precision = (Z Z score(x)) / (Z [Se]) (5)
teT xSy teT

recall = (Z Z score(x)) / (Z |G¢]) (6)
teT xSy teT

1 — 2 % prfzc.ision * recall 7)
precision + recall




We analogously define recall for segmentation (number of
ground truth segments in the predicted segmentation ignor-
ing labels). To measure labeling performance, we use F-1
score since both precision and recall matter. For segmenta-
tion we measure only recall, as over-segmentation of “junk”
segments does not affect final quality.

Algorithms. We refer to our algorithm as COLLIE. We per-
form the initial unsupervised segmentation in COLLIE using
a variant of a well known alignment algorithm [16]. The
same algorithm is used to align label sequences while up-
dating source parameters. We compare our algorithms to
WWT, BASELINE-C and BASELINE-A.

The BASELINE algorithms have the following structure.
First, snippets are segmented in an unsupervised manner;
we use alignment [16] in BASELINE-A, and Chuang et al.’s
context aware wrapping algorithm [7] based on initial align-
ments of sources in BASELINE-C. Attribute models «,, are
built for each attribute a., € A, and each segment is labeled
by the attribute whose model gives the segment the high-
est probability. Since this might result in multiple segments
being labeled by the same attribute, we clean up labels by
retaining only the highest scoring label for each attribute.
The rest of the segments are labeled Other. WWwT is the
attribute extraction component from Gupta et al’s [13] im-
plementation of a list augmentation framework® (described

in detail in Section 6).
P

5.2 Results
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(a) Segmentation Recall on HTML-1-x with 20% seed size
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(b) Labeling F-1 scores on HTML-1-x with 20% seed size

Figure 6:

Figures 6(a) and 6(b) compare the segmentation recall
and labeling accuracy of the HTML-1-x datasets (x =a, b,
bn, p, pw, u) each seeded with entities extracted from 20%

3We thank Gupta et al. for sharing their source code, and
Chuang et al. for clarifying implementation details.

452

of the snippets on those sources (5 random runs). Note that
most of these sources have about 15-30 snippets, hence 20%
is about 3-6 seed entities. Even with this small amount of
supervision, COLLIE achieves higher accuracy both the BASE-
LINE algorithms as well as WwwT. In the rest of the section,
we present more detailed results on only one of the single
source datasets, HTML-1-b, and the multisource datasets
HTML-S2, HTML-S3.

5.2.1 Effect of database seed size

In Figure 5, we compare the accuracy of COLLIE to that of
the competing algorithms for attribute extraction on HTML-
1-b, HTML-S2 and HTML-S3. In each of the datasets, we
varied the seed size parameter (s% of the entities picked
at random), and compared labeling F-1 score and segmen-
tation recall (averaged over 5 random runs). On all three
datasets, we see that COLLIE has superior labeling F-1 over
all the competing algorithms, and that COLLIE’s segmenta-
tion is comparable to the unsupervised segmentation tech-
niques, and has superior recall to to WwT’s segmentation.
Even a few examples are enough for COLLIE to get to its best
performance; BASELINE algorithms show a mild increase in
labeling F-1 scores with increasing seed size. We explain the
dip in WwT’s performance at higher supervision next.

5.2.2  Effect of attribute confusion

As mentioned in the introduction, WwT and the BASELINE
algorithms have poor labeling F-1 scores due to two reasons:
confusing attribute values, and confusing non attribute junk
segments. Figure 5 illustrates that for small Eseeq, attribute
models alone are insufficient to distinguish between confus-
ing attributes, like e.g., author and publisher. To illustrate
the effect of junk segments, in Figure 7(a), we modified the
snippets HTML-1-b to only retain segments corresponding
to attribute values (we removed serial number, ISBN num-
ber, description, and rank). COLLIE still has close to per-
fect labeling and segmentation. The BASELINE algorithms
still have trouble for small Esc.q due to attribute confusion.
However, we see that WwT performs remarkably well. This
was because in the original dataset, some author and book
names also appeared in the description field. WWT initial-
izes the segmentation, by finding string matches between
attribute values in supervision and the snippets — this step
wrongly matches some of the attribute values to mentions
in junk segments (like description). We avoid this problem,
since we leverage the unsupervised segmentation to identify
both the known and unknown attribute segments on the
page, and then use object models to label whole segments.

5.2.3 Impact of Collective Extraction

Figure 7(b) illustrates the impact of collective simultane-
ous extraction from multiple sites with seed size parameter
set to 20%. We created a modified NON-COLLECTIVE variant
of our algorithm wherein extraction proceeds on each source
independent of the others. Consequently, NON-COLLECTIVE
cannot leverage the values extracted on other sites, and
solely depends on the amount of overlap between the snip-
pets on the source and the initial seed set supervision. We
compare the labeling accuracy of this algorithm to that of
our collective algorithm and WwT. WWT is not a fully col-
lective algorithm — it performs extraction one source at a
time, but incorporates extracted values from each source to
supervise the next source.
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Figure 7:

As expected on both HTML-S2 and HTML-S3 COLLIE
has higher accuracy than NON-COLLECTIVE. While the only
a few seed entities may match each source, collective ex-
traction helps improve extraction by sharing object mod-
els across sources. Surprisingly, NON-COLLECTIVE is signifi-
cantly more accurate than WwT on the HTML-S3 dataset.

5.2.4  Impact of key quality

An important cue leveraged by COLLIE is that the same
entity is mentioned on multiple sources, and that we know
n(t), the true entity associated with snippet ¢. While this
perfect matching is seldom available, approximate matches
between snippets can be easily found. To study how COLLIE
behaves with imperfect keys, we tested the accuracy of ex-
traction when using bookname ID or author ID instead of the
perfect ID. As can be seen from Figure 7(c), even with im-
perfect keys, extraction accuracy is quite good. Such imper-
fect keys are quite prevalent, e.g., URLs and phone numbers
indicating the wide applicability of our approach.

In some cases, like bookname ID, we get better labeling
accuracy than with perfect keys. Segmenting a snippet ¢ is
helped the most if an algorithm knows that the attribute
value extracted from a different snippet ¢’ matches that
attribute on ¢. Knowing the perfect key does not guar-
antee this; e.g. the title of the book “Titan’s curse” is
represented as “The Titan’s Curse (Percy Jackson and the
Olympians #03)” in one source and as “Percy Jackson and

the Olympians, Book 3:The Titan’s Curse” in another source.

Combined with a small seed set, this variation can lead to
a drop in accuracy. In fact, we computed the average pair-
wise Jaccard distances between attribute values for snippets
sharing the same key, which we will call keyPurity. For
instance, in HTML-S3, we found that keyPurity(perfect) =
0.79 while the keyPurity(bookname) = 0.88; this might ex-
plain the better accuracy.

5.3 Discussion

The study on the books data sets supports four key points
about our approach to collective extraction: First, by lever-
aging a variety of cues, COLLIE, achieves good attribute seg-
mentation and labeling even with small seed sets signifi-
cantly better than state of the art (Section 5.2.1). Second,
our algorithm is able to label accurately despite attribute

confusion, and confusing non attribute segments (Section 5.2.2).

Third, our collective extraction algorithm outperforms non-
collective baselines (Section 5.2.3). Finally, while COLLIE

assumes perfect knowledge of n(t), the true entity associ-
ated with the snippet, COLLIE can also use imperfect keys.
We show that approximate matching schemes which ensures
that matching snippets have very similar attribute values
boost COLLIE’s performance (Section 5.2.4).

6. RELATED WORK

Recently, there has been considerable interest in large
scale extraction of multi-attribute entity records from list
pages on the web. Such extraction entails discovery of list
page sources, segmentation of lists into snippets that corre-
spond to entity descriptions, and finally, extraction of enti-
ties themselves. Our current work focuses on the last step,
i.e., entity extraction given multiple segmented lists from
different sources. Most existing techniques for addressing
this problem follow three main paradigms discussed below.

The first class of approaches make use of source-specific
supervision (i.e., a small number of segmented and labeled
records on each list page) to learn attribute-ordering and
layout patterns via wrapper induction [6, 14] or conditional
random fields [20, 23], which are then used to label the rest
of the snippets. In contrast, we use supervision strictly from
an external database. There exist variants [5] that make use
of annotations generated from a large seed database to learn
source-specific models even without explicit source-specific
supervision. In either case, the labeled snippets have to be
separately deduped [19] to finally identify the unique en-
tities. This approach is, however, prohibitively expensive
to scale due to the excessive supervision requirements and
does not take any advantage of the content overlap between
sources. Recent techniques [15] add information from the
database and perform deduping, but still require source-
specific supervision, perhaps due to the use of a discrimi-
native technique (CRFSs).

The second class of approaches [7, 11] perform attribute
extraction using both within-source structural regularity (e.g.,
HTML, delimiter cues, lexical features), as well as global at-
tribute distributional properties. Most of these techniques
involve two core steps where the first step collectively seg-
ments all the snippets in a source into aligned fields in an
unsupervised fashion and the second step involves match-
ing (or labeling given a reference database) the fields across
different sources using the global distributional properties.
There also exists an alternative approach [23] that makes use
of the same predictive signals, but in a coupled fashion via



a conditional random field with features chosen carefully to
capture the local structural similarity and global common-
alities. This CRF-based technique, however, requires a fair
bit of supervision, typically 1/3 of the sources in the test set
in experiments,? and thus cannot be used if site-specific su-
pervision is not cost-effective. Though all these approaches
account for global distributional commonalities, these tech-
niques do not involve any entity deduping and cannot make
use of any fine-grained dependencies arising from multiple
snippets describing the same entity. These methods also
tend to be not as effective in the presence of confusing at-
tributes, e.g., phone and fax numbers, and moderate struc-
tural variations within a source.

Gupta and Sarawagi [13] recently proposed a third ap-
proach called World Wide Tables (WW'T) that is closest in
spirit to our current work. Like COLLIE and unlike most of
the related work, WW'T can handle lists with little or no
HTML structure. WWT is an end-to-end system for ex-
panding a query table using unstructured lists on the web
that addresses source discovery, extraction, and ranking.
Since the initial query is only a few example tuples, the
size of supervision required is modest. The WWT approach
labels records on a new site based on the current database,
and adds to that database after extraction.

Unlike our collective extraction approach, each inference
step is performed independently without adequately account-
ing for the uncertainty involved in the preceding steps and
hence, there is a considerable potential for errors to propa-
gate. The choice of discriminative model in WW'T allows for
inclusion of a wide variety of features, but places the onus
on the system designer to specify these features. It also
requires extremely high quality initial annotations since it
operates in a supervised fashion. On the other hand, our
sequential generative model models the snippet labeling as
a latent variable allowing us to capture the uncertainty in
the annotations in a principled fashion. Our model also al-
lows discovery of unknown attributes, and can capture the
layout patterns fairly well even in the presence of such la-
tent fields, while the semi-Markov CRF has to be provided
additional long-range features to obtain a comparable per-
formance. Furthermore, our active set based incremental
inference is significantly more powerful than WW'T’s source
prioritization (based on the number of annotations).

7. CONCLUSIONS

In this paper, we consider the problem of multi-attribute
record extraction from unstructured lists on the web. This
is a challenging task due to the need to extract from a va-
riety of small sites with different formatting templates. We
present a novel approach to jointly extract attribute val-
ues for these records based on collective extraction with
a sequential model, use of unsupervised segmentation and
local search to handle additional attributes and junk seg-
ments, and careful active set management to better cope
with noisy sources and confusing attributes. We evaluate
our algorithms on real, noisy data sets and obtain supe-
rior performance relative to some of the existing state-of-art
techniques indicating that our methodology is able to effec-
tively exploit multiple types of predictive cues, and adapt

4We thank the authors for this clarification via private com-
munication.
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to difficult, noisy extraction cases where site-specific super-
vision is cost-prohibitive.
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