
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3098

Sequence Prediction with Unlabeled Data by Reward Function Learning∗

Lijun Wu1, Li Zhao2, Tao Qin2, Jianhuang Lai1,3 and Tie-Yan Liu2

1School of Data and Computer Science, Sun Yat-sen University
2Microsoft Research Asia

3Guangdong Key Laboratory of Information Security Technology
wulijun3@mail2.sysu.edu.cn; {lizo, taoqin, tie-yan.liu}@microsoft.com; stsljh@mail.sysu.edu.cn

Abstract

Reinforcement learning (RL), which has been suc-
cessfully applied to sequence prediction, intro-
duces reward as sequence-level supervision signal
to evaluate the quality of a generated sequence.
Existing RL approaches use the ground-truth se-
quence to define reward, which limits the applica-
tion of RL techniques to labeled data. Since labeled
data is usually scarce and/or costly to collect, it is
desirable to leverage large-scale unlabeled data. In
this paper, we extend existing RL methods for se-
quence prediction to exploit unlabeled data. We
propose to learn the reward function from labeled
data and use the predicted reward as pseudo reward
for unlabeled data so that we can learn from unla-
beled data using the pseudo reward. To get good
pseudo reward on unlabeled data, we propose a
RNN-based reward network with attention mech-
anism, trained with purposely biased data distribu-
tion. Experiments show that the pseudo reward can
provide good supervision and guide the learning
process on unlabeled data. We observe significant
improvements on both neural machine translation
and text summarization.

1 Introduction
Sequence prediction, the task of producing a sequence of to-
kens given an input, attracts more and more attention in re-
search community recently. The input is quite flexible, de-
pending on the applications, such as source language sen-
tences in machine translation, documents in text summariza-
tion, or speech segments in speech recognition. It has been
shown that recurrent neural networks (RNNs) can deliver ex-
cellent performance in many such applications [Sutskever et
al., 2014; Bahdanau et al., 2014] when trained to maximize
the likelihood of the next output token given the input and
previous output tokens.

Recently, reinforcement learning (RL) has been introduced
into sequence prediction to address several shortcomings of
previous training methods. One main shortcoming is that,

∗This work was conducted at Microsoft Research Asia.

the models are optimized to maximize the likelihood of train-
ing data, which may not well match the evaluation metrics
that actually quantify the prediction quality. These evalua-
tion metrics, such as BLEU score [Papineni et al., 2002] for
machine translation and ROUGE score [Lin, 2004] for text
summarization, are usually defined at sequence level. These
metrics are formulated as reward in RL for direct optimiza-
tion and various RL algorithms such as REINFORCE [Ran-
zato et al., 2016] and actor-critic [Bahdanau et al., 2016] are
used for training.

However, the reward in these RL works is defined on the
ground-truth sequence, which limits the approach to labeled
data. Labeled data is usually costly to collect and thus lim-
ited in quantity and coverage, making it appealing to ex-
ploit large-scale unlabeled data. Although unlabeled data is
employed in some works to augment sequence prediction,
by learning better language model [Dai and Le, 2015], by
generating more pseudo labeled data [Sennrich et al., 2016;
Zhang and Zong, 2016], and by minimizing the reconstruc-
tion error [Cheng et al., 2016], all of the above works train
their models through likelihood maximization, thus suffering
from the shortcomings we discussed above.

In this paper, we extend the existing RL methods for se-
quence prediction to further exploit unlabeled data. Since the
reward is missing on unlabeled data, we propose to learn the
reward function from labeled data, and use the learned re-
ward function as the supervision signal for unlabeled data.
Namely, we use the predicted reward from our learned reward
function, as pseudo reward on unlabeled data. Our reward
function takes the source sequence X and an arbitrary target
sequence Ŷ as input, and try to predict the reward R(Y, Ŷ ),
which is defined based on ground-truth Y . The effectiveness
of reward function learning is extremely important for our
method. The better reward function we learn, the better per-
formance we can expect.

Reward function learning is challenging for sequence pre-
diction due to two reasons: First, we need to predict reward
only based on (X, Ŷ ), while the true reward is computed
based on (Y, Ŷ ). Second, the space of all possible Ŷ ’s is ex-
tremely large, and the reward R(Y, Ŷ ) is zero for most Ŷ ’s,
making it easy to predict 0 for all Ŷ ’s and ignore those im-
portant Ŷ ’s with non-zero reward.

For the first challenge, we show it is solvable to predict re-
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ward from (X, Ŷ ). We propose a RNN-based reward network
with attention mechanism. The reward function can be seen
as capturing the correspondence between source sequence X
and predicted target sequence Ŷ , measuring to what extent Ŷ
matches X . To the best of our knowledge, we are the first
to learn a reward function that takes (X, Ŷ ) as input for se-
quence prediction.

To tackle the second challenge, we purposely bias the train-
ing data distribution. Inspired by the REINFORCE algo-
rithm, we show that it is unnecessary to predict reward pre-
cisely on all Ŷ ’s. Instead, we train the reward network with
respect to the data distribution P (X, Ŷ ) generated by the cur-
rent sequence predictor, which is referred as policy using the
language of RL. As the policy changes, we change the distri-
bution of training data correspondingly. In order to do this,
we couple the policy training process with the reward func-
tion learning process. The policy function learns from the
reward signal provided by the reward function, while the re-
ward function adapts to the data distribution generated by the
continuously changing policy.

The contributions of this paper are summarized as follows:

• We propose to leverage unlabeled data to augment exist-
ing RL methods for sequence prediction. Since reward is
missing on unlabeled data, we learn the reward function
on labeled data and use the predicted reward as pseudo
reward on unlabeled data.

• In order to learn the reward function, we propose a
RNN-based reward network with attention mechanism,
trained with purposely biased data distribution.

• Experiments on machine translation and text summa-
rization show that our method can leverage unlabeled
data effectively, and achieve better performance than ex-
isting methods.

2 Background
In this section, we introduce background works: 1) how RNN
is used for sequence prediction and trained by maximum like-
lihood estimation; 2) how RL methodology is introduced to
directly optimize evaluation metrics of sequence prediction
tasks. We build our work based on those works.

2.1 Sequence Prediction
In the sequence prediction task, we aim to learn a parame-
terized model pφ(yt|Y1...t−1, X), which models the proba-
bility of next token yt conditioned on input X and previous
tokens Y1...t−1. With such a model, we try to predict yt with
the highest conditional probability at each time step, and thus
generate the tokens one by one to produce the target sequence
Y . A good model pφ(yt|Y1...t−1, X) can generate target se-
quence Y with high probability.

To learn a good model for the conditional probability,
one should first carefully design its representation and then
select the training principle. Existing works adopt Recur-
rent Neural Networks to represent the parameterized model
pφ(yt|Y1...t−1, X), and maximum likelihood estimation as
training principle, which are introduced briefly as follows.

Recurrent Neural Network Recurrent Neural Networks
(RNNs) are good candidates to model the probability
pφ(yt|Y1...t−1, X) with variable length of input. The key
component of RNN is state vector st, which compresses the
historical information of Y1...t and X . The state vector st,
as shown in the following equation, is updated in a recurrent
way, based on the last output token yt, the context vector ct−1
which represents information from input X , and the last state
vector st−1.

st = f(st−1, ct−1, yt), (1)

where function f is the recurrent unit such as Long Short-
Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]
unit or Gated Recurrent Unit (GRU) [Cho et al., 2014]. Based
on the state vector and the context vector, the probability of
next token is modeled as follows:

pφ(yt|Y1...t−1, X) = g(st−1, ct−1, yt) (2)

where g is a stochastic output layer (typically a softmax for
discrete outputs). The context vector ct can be defined in
several ways. [Bahdanau et al., 2014] proposes an attention
mechanism to compute the context vector. Given a variable
length representation (h1, ..., hL) for the input X , they com-
pute an attention weight α which determines the relative im-
portance of each vector hj at each time step:

αt = β(st, (h1, ..., hL)),

ct =

L∑
j=1

αt,jhj ,
(3)

where β is the attention mechanism that produces the atten-
tion weight α and ct is the context vector for time step t. The
attention weights are computed by a multi-layer perceptron
(MLP) that takes as input the RNN state and each individual
vector to focus on. The weights are typically constrained to
be positive and sum to 1 by using the softmax function.

Maximum Likelihood Estimation Given labeled data
(X,Y ), one popular approach to train a good model is to
ask the model output Y with high probability given input
X , which is usually referred as maximum likelihood esti-
mation (MLE). Given labeled data set {X(i), Y (i)}i∈{1,...,N},
the MLE objective function is

OML(φ) =

N∑
i=1

logPφ(Y
(i)|X(i)) (4)

where the probability can be expanded as Pφ(Y |X) =
p(y1|X)p(y2|y1, X)...p(yT |Y1...T−1, X)p(∅|Y1...T , X), and
∅ is a special end-of-sequence token.

2.2 RL for Sequence Prediction
As described above, the model is learned by maximizing the
likelihood of labeled data, P (Y |X), at training time. How-
ever, at test time the model is evaluated by a task-specific met-
ric. That is, the training does not match evaluation. A more
straightforward approach is to directly optimize the evalua-
tion metric, and thus sequence prediction has been formulated
as a RL problem [Bahdanau et al., 2016] as follows.
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The RNN model is an agent, which interacts with the envi-
ronment to get reward. The parameters of this agent define a
policy, whose execution results in the agent picking an action
a. In this case, an action refers to generating the next token
at each time step. After taking each action, the agent updates
its state (the internal hidden state of RNN). A terminal re-
ward is received once the agent finishes generating sequence.
Any task-specific evaluation metric can be used as reward. In
this paper, we use BLEU score for machine translation, and
ROUGE score for text summarization, which are the metrics
we use at test time. The reward is usually defined by gen-
erated Ŷ and ground-truth Y , as R(Ŷ , Y ). The goal of the
training is to maximize the expected total reward as follows:

ORL(φ) =
N∑
i=1

∑
Ŷ ∈Y

Pφ(Ŷ |X(i))R(Ŷ , Y (i)) (5)

The REINFORCE algorithm [Williams, 1992] is applied
here. As discussed in [Ranzato et al., 2016], the large ac-
tion space here (since the vocabulary is large) makes it ex-
tremely difficult to learn with an initial random policy. In
order to speed up training, two tricks are used in [Bahdanau
et al., 2016]: 1) they start with a policy pre-trained by maxi-
mizing log-likelihood, rather than a random policy; 2) they
use reward shaping to receive intermediate reward at each
step, the shaped reward are defined as rt(ŷt; Ŷ1...t−1, Y ) =

R(Ŷ1...t, Y )−R(Ŷ1...t−1, Y ). It is worth noting that the space
for all possible Ŷ ’s is extremely large, making it impossible
to calculate the objective exactly in Eq. 5. In the REIN-
FORCE algorithm, the objective is computed approximately
by Ŷ sampled from policy pφ.

3 Reward Function Learning
In order to enhance the existing REINFORCE algorithm and
leverage unlabeled data, we need to learn a reward function
Rθ(X, Ŷ ) to give pseudo reward to unlabeled data. With the
pseudo reward, we can learn from unlabeled data in a way
similar to labeled data in the REINFORCE algorithm.

Reward function learning is challenging for sequence pre-
diction. The first challenge lies in representation, where we
need to predict the reward R(Ŷ , Y ) with a parameterized
function taking (X, Ŷ ) as input rather than (Ŷ , Y ). The
second challenge comes from unbalanced data distribution.
Since the space of all possible Ŷ ’s is extremely large and
R(Ŷ , Y ) is zero for most Ŷ ’s, if we target on all possible Ŷ ’s,
the objective function will drive our model to predict 0 for all
Ŷ ’s and ignore those important Ŷ ’s with non-zero reward.

In this section, we introduce our solutions to the challenges
and propose an algorithm for reward function learning. First,
we design a RNN-based reward network which takes (X, Ŷ )
as input.1 Second, we specially construct a biased data dis-
tribution for training to tackle the second challenge. Finally,
we put everything together and give a detailed REINFORCE
algorithm for sequence prediction with unlabeled data.

1Although we do not specially design the network for the first
challenge, our experiments show that the RNN-based reward net-
work with (X, Ŷ ) as input works reasonably well.

3.1 Reward Network
As reviewed in the previous section, in the REINFORCE al-
gorithm, after taking each action (generating one token), the
agent receives an immediate reward, which will be used to
update its policy. For labeled data, the reward is available,
which is computed by comparing the generated tokens with
the ground-truth output. However, the ground-truth output
for unlabeled data is missing. Thus, we need to learn a reward
function gθ, which provides a pseudo reward at each time step
t, as an approximation for true reward rt(ŷt; Ŷ1...t−1, Y ).

This is again a sequence modeling task. Given input
(X, Ŷ ), the target is to generate a sequence of immediate re-
wards. At time step t, we only know X and Ŷ1...t, which
means that our parameterized reward function gθ should take
the form gθ(ŷt; Ŷ1...t−1, X). Clearly, the number of inputs
of this function changes over time. A natural choice to rep-
resent functions with variable length of inputs is recurrent
neural networks (RNNs), which compress the input sequence
Ŷ1...t into a hidden state st, and predict the reward rt based
on both context information from X and current hidden state
st. Mathematically,

rt = h(st, ct), (6)

where current hidden state st and context vector ct are com-
puted in the same way as in Section 2.1.

Let θ denote all the parameters in the RNN-based reward
network. Now we have a RNN-based parameterized model
gθ(ŷt; Ŷ1...t−1, X), to represent the reward for every time step
t in Ŷ .

3.2 Training Data Distribution
One common way to learn a good reward function is to mini-
mize the Mean Square Error (MSE) on labeled data:

OMSE(θ) =

N∑
i=1

∑
Ŷ

T∑
t=1

{gθ(ŷt; Ŷ1...t−1, X(i))

− rt(ŷt; Ŷ1...t−1, Y (i))}2.

(7)

As aforementioned, Ŷ ’s with non-zero rewards are only
the minority among all possible Ŷ ’s. The MSE objective will
drive gθ to give zero prediction everywhere if we compute the
objective on all possible Ŷ ’s. Fortunately, the REINFORCE
algorithm does not touch every possible Ŷ . Instead, it only
needs to use the rewards on those Ŷ ’s generated by the policy.
A pre-trained policy is usually good enough, and its generated
Ŷ ’s are often of high quality. In other words, the Ŷ ’s gener-
ated by a pre-trained policy (through beam search) usually
have non-zero rewards. As a result, we only need to focus
on those Ŷ ’s, which makes reward function learning much
easier.

We first generate training data (X,Y, Ŷ ) based on a pre-
trained policy, and pre-train our reward network with the gen-
erated data. Since the policy changes during training, the
data distribution generated by the policy changes accordingly.
In order to adapt to this data distribution shifting, we then
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couple the reward function learning process with the REIN-
FORCE training process. The policy function learns from the
reward signal provided by the reward function, while the re-
ward function adapts to the data distribution generated by the
continuously changing policy.

Now we give some intuition about the training process.
The generated Ŷ is somehow what the policy thinks as a good
prediction. The reward for Ŷ , somehow as a rater, further crit-
icizes where the policy did well, where the policy did poorly,
reflected by the predicted reward at each step. Namely, we
learn to criticize the existing policy. Good criticism serves as
weak supervision, and guides the current policy move to the
right direction. By biasing and changing the training distribu-
tion, intuitively we do not learn the standard reward function,
but actually learn how to criticize the current policy.

Algorithm 1: REINFORCE Training for Sequence Pre-
diction with Unlabeled Data
Require: A policy pφ(a|Ŷ1...t, X) and a reward function

gθ(a; Ŷ1...t, X) with weights φ and θ respectively;
Labeled data set {X(i), Y (i)}i∈{1,...,N}; Unlabeled data
set {X(i)}i∈{N+1,...,N+M}.

1: Initialize delayed policy p′φ′ and delayed reward
function g′ with same weight: φ′ = φ, θ′ = θ

2: while Not Converged do
3: Randomly receive a labeled or unlabeled data
4: Generate a sequence of actions Ŷ from p′

5: if the received data is labeled data (X,Y ) then
6: compute shaped reward with ground-truth for all t

rt(ŷt; Ŷ1...t−1) = R(Ŷ1...t, Y )−R(Ŷ1...t−1, Y )
7: Update reward function weights θ using the

gradient for all t
d
dθ (gθ(ŷt; Ŷ1...t−1, X)− rt(ŷt; Ŷ1...t−1, Y ))2

8: else
9: compute shaped reward with reward function for all

t
rt(ŷt; Ŷ1...t−1) = αg′(ŷt; Ŷ1...t−1, X)

10: end if
11: Compute value function Vt(ŷt; Ŷ1...t−1) for all t

Vt(ŷt; Ŷ1...t−1) =
∑T
τ=t rt(ŷτ ; Ŷ1...τ−1)

12: Update policy weights φ using the following gradient
estimate∑T
t=1

d log p(a=ŷt|Ŷ1...t−1,X)
dφ (Vt(ŷt; Ŷ1...t−1)− bt(X))

13: Update delayed policy and reward, with a constant γ
φ′ = γφ+ (1− γ)φ′, θ′ = γθ + (1− γ)θ′

14: end while

3.3 Overall Algorithm
With learned reward function, now we can extend the REIN-
FORCE training algorithm for sequence prediction with unla-
beled data. The training details are shown in Algorithm 1 and
2. Note that bt(X) is called control variance in [Bahdanau et
al., 2016]. We start with a pre-trained policy and a pre-trained
reward function. During training, true reward is used for la-
beled data and predicted reward is used for unlabeled data. In

order to control the relative importance of unlabeled data, we
rescale the predicted reward with hyper parameter α. As the
policy changes slowly, we go on training the reward function
with data generated by current policy. We also apply deep
RL techniques [Bahdanau et al., 2016] here, by adopting de-
layed policy and delayed reward function, with the purpose
to prevent divergence.

Some semi-supervised learning methods [Zhang and Zong,
2016] generate Ŷ for an unlabeledX and treat (X, Ŷ ) pair as
pseudo labeled data to enlarge training data. Those methods
have no mechanism to control the quality of generated pseudo
pairs. Compared with these methods, the reward function in
our method provides quality feedback about a pseudo pair
(X, Ŷ ). As a result, our method can leverage and learn from
unlabeled data in a more precise way.

Algorithm 2: Complete Algorithm for Sequence Predic-
tion with Unlabeled Data

1: Initialize policy function pφ(a|Ŷ1...t, X)and reward
function gθ(a; Ŷ1,...,t, X) with random weights φ and
θ respectively.

2: Pre-train the policy to predict yt+1 given Y1...t and X
by maximizing log pφ(yt+1|Y1...t, X).

3: Run Algorithm 1 to pre-train reward function with
fixed policy.

4: Run Algorithm 1.

4 Experiments
To valid our approach, we performed experiments on two se-
quence prediction tasks, machine translation and text sum-
marization. In addition to MLE and REINFORCE with la-
beled data only, we also implement a semi-supervised learn-
ing baseline to test on machine translation task.

4.1 Experimental Settings
Machine Translation For the machine translation experi-
ment, we use data from the German-English machine transla-
tion track of the IWSLT 2014 evaluation campaign [Cettolo et
al., 2014], as used in [Ranzato et al., 2016] and [Bahdanau et
al., 2016]. For a fair comparison, we exactly follow the pre-
processing described in above two works. The data consists
of training/dev/test corpus with 153326, 6969 and 6750 sen-
tence pairs respectively. The English vocabulary has 22822
words, while the German has 32009 words, all other words
were replaced with a special token. The maximum sentence
length in our data set is 50. For unlabeled data, we only
take source sentences from IWSLT 2015 evaluation campaign
[Cettolo et al., 2015] data set, the number of unlabeled data
is 153326, equal to that of labeled data.

Our policy is a GRU with 256 hidden units, and we use the
same convolutional attentive encoder architecture as [Ranzato
et al., 2016] and [Bahdanau et al., 2016] to make our results
more comparable. The reward network is similar to the pol-
icy function except the concatenation of decoder hidden state
and context vector are fed into another multilayer perceptron
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Model Greedy Beam search
LL∗ [Ranzato et al., 2016] 17.74 20.3

MIXER [Ranzato et al., 2016] 20.73 21.8
LL [Bahdanau et al., 2016] 19.33 21.46
RF [Bahdanau et al., 2016] 20.92 21.35
Semi-supervised baseline 20.10 21.65

Our work 21.64 22.35

Table 1: BLEU scores on German-English translation test set. LL,
RF stands for log-likelihood, REINFORCE. The asterisk identi-
fies results from [Ranzato et al., 2016]. LL and LL∗ both denote
maximum log-likelihood training. LL is implemented by Blocks
[Van Merriënboer et al., 2015] while LL∗ is implemented by Torch
[Collobert et al., 2011]. Our work is significantly better than other
models (ρ < 0.01).

(MLP) with 256 hidden units, and finally output a real num-
ber as predicted reward. Hyper parameter α is 0.5, and the
delay constant γ is 0.1.

Text Summarization The data set we use to train and eval-
uate our model on text summarization is from a subset of
Gigaword Corpus [Graff and Cieri, 2003]. We use the first
sentence of a new article as source input, and the headline as
target output, as described in [Rush et al., 2015]. We pre-
process the data in the same way as above work. After pre-
processing there are 42212 words in the source dictionary and
19014 words in the target dictionary. The number of sen-
tence pairs in the training set, validation set and test set are
189295, 18475 and 10000 respectively 2 . For unlabeled data,
we use another subset of 189295 training data and only take
the source article.

The policy and reward network are same as used in ma-
chine translation except the dimension of embedding and hid-
den state are reduced to 128. The hyper parameters are same
as in machine translation.

4.2 Experimental Results
We compute BLEU score on the machine translation task and
ROUGE score on text summarization task. For decoding we
use greedy search and beam search with a beam size of 10.

Machine translation results are reported in Table 1. We
first compare our work with previous models, the MIXER in
[Ranzato et al., 2016] and REINFORCE in [Bahdanau et al.,
2016]. Results are reported from the best setting in the corre-
sponding paper. The MIXER in [Ranzato et al., 2016] com-
bines REINFORCE and MLE for curriculum training. The
RF in [Bahdanau et al., 2016] is exactly the same as our al-
gorithm without unlabeled data. Our model has an improve-
ment of 0.7/0.9 BLEU points when using greedy search, and
an improvement of 1.0/0.5 BLEU points when using beam
search. We also implement a semi-supervised baseline model
with MLE training [Zhang and Zong, 2016]. The pre-trained
policy generates translations Ŷ for unlabeled data X , then
we put (X, Ŷ ) with labeled data together for better training.

2Note the data set is different from [Ranzato et al., 2016] because
their data is not released, but we pre-process the data in a same way.

Figure 1: Progress of REINFORCE and our method with BLEU
score on the validation set. The curves start from the epoch of log-
likelihood pretraining from which the parameters were initialized.

Model Greedy Beam search
Log-Likelihood 8.85 10.22
REINFORCE 12.15 12.87

Our work 12.89 13.21

Table 2: ROUGE-2 scores compared to REINFORCE on text sum-
marization test set. Our work is significantly better than Log-
Likelihood and RFINFORCE (ρ < 0.01).

α Test BLEU Valid BLEU
0 20.92 22.6

0.5 21.64 23.1
1 21.41 22.9

Table 3: BLEU scores for different α in our work on German-
English translation test set and validation set.

Semi-supervised model has a significant improvement over
log-likelihood baseline, 20.10 compared to 17.74/19.33, and
our model has additional 1.5 BLEU points improvement.

Moreover, Figure 1 shows that our work has better progress
on the validation set. The BLEU curve is clearly stronger than
REINFORCE without unlabeled data.

Text summarization results are reported in Table 2. We
compare to [Bahdanau et al., 2016] 3 and observe an improve-
ment of 0.7 ROUGE points.

Impact of Hyper Parameter We try different hyper pa-
rameters by setting α = {0, 0.5, 1}, to see how it impacts
the performance of our method on machine translation task.
The BLEU scores of greedy search on test and validation set
are reported in Table 3. We find that non-zero α achieves
similar superior performance compared with zero α, which
demonstrates the effectiveness and robustness of our method.

3We use open source code from [Bahdanau et al., 2016]:
https://github.com/rizar/actor-critic-public, with BLEU metric re-
placed by ROUGE.



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3103

reward setting Test Validation
REINFORCE 20.92 22.6

Random reward 19.44 21.4
Our reward function 21.64 23.1

True reward 22.10 23.9

Table 4: BLEU scores under different settings of pseudo reward for
unlabeled data on German-English translation task.

The Effectiveness of Learned Reward Function Finally,
we want to demonstrate the effectiveness of our learned re-
ward function, by replacing the pseudo reward in our method.
To be specific, we test our method on machine translation task
by setting the pseudo reward for unlabeled data as: 1. random
reward, 2. our reward function (as we used in previous exper-
iment), 3. true reward (computed by using the target sentence
for unlabeled data). We want to see how good supervision
can our reward function provide, with comparison to random
reward and true reward.

The results are reported in Table 4. Random reward gives
bad supervision signal and misleads the learning process, and
thus hurts the performance. Our reward function gives a fairly
good supervision signal, with a performance not too far away
from that of the true reward, which demonstrates the effec-
tiveness of our learned reward function.

5 Related Work
Our work is related to three different research topics: rein-
forcement learning for sequence prediction, semi-supervised
sequence prediction, and inverse reinforcement learning.

Reinforcement Learning for Sequence Prediction RL is
introduced to sequence prediction aiming at addressing the
problem of the gap between the training objective and the
final evaluation metric. [Daumé et al., 2009] is the first to
formulate structure prediction problem as a special case of
reinforcement learning. [Ranzato et al., 2016] proposes to
leverage RL to directly optimize the sequence-level evalua-
tion metric, such as BLEU or ROUGE. A terminal reward is
received when the policy finishes generating sequence. [Shen
et al., 2016] propose the minimum risk training to minimize
the expected loss on the training data, which is in the same
spirit as RL formulation to directly optimize the evaluation
metric. [Bahdanau et al., 2016] argues that immediate re-
ward is good for faster convergence, and makes reward signal
less sparse. They also propose to apply actor-critic for less
variance in value function estimation. Although they learn a
value function in their model which is somewhat analogous
to our reward function, their value function takes (Y, Ŷ ) as
input which makes their function much easier to learn. While
our function takes (X, Ŷ ) as input, and thus has the ability
to learn with unlabeled data. The following two statements
distinguish our method from all above methods: 1. None of
these methods employ unlabeled data. 2. We are the first to
learn the reward function taking (X, Ŷ ) as input in sequence
prediction.

Semi-supervised Sequence Prediction Since it is cost to
collect labeled data but cheap to collect unlabeled data, there
are many works focusing on semi-supervised sequence pre-
diction. These methods can roughly be divided into three cat-
egories: 1. multi-task learning by sharing parameter/model
component [Dai and Le, 2015]; 2. generating pseudo labeled
data [Sennrich et al., 2016; Zhang and Zong, 2016]; 3. re-
construction on unlabeled data [Cheng et al., 2016]. Under
the view of semi-supervised sequence prediction, our model
can be seen as generating pseudo labeled data (X, Ŷ ) and
learning to evaluate to what extent should we trust this pseudo
data, namely, the predicted reward in our RL setting. We are
the first to introduce this novel way for semi-supervised se-
quence prediction under the RL framework.

Inverse Reinforcement Learning Inverse Reinforcement
Learning (IRL) [Ng and Russell, 2000] is the problem of
learning a reward function given observed optimal behaviour.
In IRL, we have no access to the reward signal. While in our
case, the reward signal is defined on labeled data, but is miss-
ing on unlabeled data. Due to the access to reward on labeled
data, we can learn the reward function directly by function
approximation, rather than under the IRL framework.

Another closely related work is dual learning [He et al.,
2016], which also leverages unlabeled data and has the reward
definition. In their work, the reward is defined on unlabeled
data heuristically. While in our case, we learn a reward func-
tion for (X, Ŷ ) explicitly, by approximating reward function
with true reward on labeled data. Another difference is that
dual learning takes a pair of dual sequence predictors, which
is not necessary in our work.

6 Conclusion
In this paper, we have proposed to learn reward function for
sequence prediction, in order to extend existing REINFORCE
training to unlabeled data. Reward function learning is chal-
lenging for sequence prediction due to the missing of ground-
truth Y and the sparsity of non-zero Ŷ ’s. We have addressed
the second challenge through the purposely designed training
data distribution, and found that RNN reward network works
quite well for the first challenge, although it is not specially
designed for the challenge. Experiments have demonstrated
the effectiveness of our approach for neural machine transla-
tion and text summarization.

For future work, we plan to apply our method to more se-
quence prediction applications, such as image caption and
speech recognition. We will investigate the first challenge and
study how to better handle it. Furthermore, we will try var-
ious methods to learn better reward functions. For example,
one candidate method is to leverage prior knowledge such as
dictionary while learning reward function for machine trans-
lation. Another promising research direction is to predict re-
ward with confidence, rather than just a real number. Pseudo
reward with confidence interval can better guide the utiliza-
tion of unlabeled data in training.
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