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Abstract

We present a new type of probabilistic model which we call DISsimilarity COeffi-
cient Networks (DISCO Nets). DISCO Nets allow us to efficiently sample from a
posterior distribution parametrised by a neural network. During training, DISCO
Nets are learned by minimising the dissimilarity coefficient between the true distri-
bution and the estimated distribution. This allows us to tailor the training to the loss
related to the task at hand. We empirically show that (i) by modeling uncertainty on
the output value, DISCO Nets outperform equivalent non-probabilistic predictive
networks and (ii) DISCO Nets accurately model the uncertainty of the output,
outperforming existing probabilistic models based on deep neural networks.

1 Introduction
We are interested in the class of problems that require the prediction of a structured output y ∈ Y
given an input x ∈ X . Complex applications often have large uncertainty on the correct value of y.
For example, consider the task of hand pose estimation from depth images, where one wants to
accurately estimate the pose y of a hand given a depth image x. The depth image often has some
occlusions and missing depth values and this results in some uncertainty on the pose of the hand. It is,
therefore, natural to use probabilistic models that are capable of representing this uncertainty. Often,
the capacity of the model is restricted and cannot represent the true distribution perfectly. In this case,
the choice of the learning objective influences final performance. Similar to Lacoste-Julien et al. [12],
we argue that the learning objective should be tailored to the evaluation loss in order to obtain the best
performance with respect to this loss. In details, we denote by ∆training the loss function employed
during model training, and by ∆task the loss employed to evaluate the model’s performance.

We present a simple example to illustrate the point made above. We consider a data distri-
bution that is a mixture of two bidimensional Gaussians. We now consider two models to capture
the data probability distribution. Each model is able to represent a bidimensional Gaussian
distribution with diagonal covariance parametrised by (µ1, µ2, σ1, σ2). In this case, neither of
the models will be able to recover the true data distribution since they do not have the ability to
represent a mixture of Gaussians. In other words, we cannot avoid model error, similarly to the
real data scenario. Each model uses its own training loss ∆training. Model A employs a loss that
emphasises on the first dimension of the data, specified for x = (x1, x2),x′ = (x′1, x

′
2) ∈ R2

by ∆A(x−x′) = (10× (x1−x′1)2 + 0.1× (x2−x′2)2)
1/2. Model B does the opposite and employs

the loss function ∆B(x− x′) = (0.1× (x1 − x′1)2 + 10× (x2 − x′2)2)
1/2. Each model performs a

grid search over the best parameters values for (µ1, µ2, σ1, σ2). Figure 1 shows the contours of the
Mixture of Gaussians distribution of the data (in black), and the contour of the Gaussian fitted by
each model (in red and green). Detailed setting of this example is available in the supplementary
material.
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Table 1: ∆task± SEM (standard error of
the mean) with respect to ∆training employed.
Evaluation is done the test set.

∆training

∆task ∆A ∆B

∆A 11.6± 0.287 13.7± 0.331

∆B 12.1± 0.305 11.0± 0.257

Figure 1: Contour lines of the Gaussian distribution fitted by each
model on the Mixture of Gaussians data distribution. Best viewed
in color.

As expected, the fitted Gaussian distributions differ according to ∆training employed. Table 1 shows
that the loss on the test set, evaluated with ∆task, is minimised if ∆training = ∆task. This simple
example illustrates the advantage to being able to tailor the model’s training objective function to
have ∆training = ∆task. This is in contrast to the commonly employed learning objectives we present
in Section 2, that are agnostic of the evaluation loss.

In order to alleviate the aforementioned deficiency of the state-of-the-art, we introduce DISCO Nets,
a new class of probabilistic model. DISCO Nets represent P , the true posterior distribution of the
data, with a distribution Q parametrised by a neural network. We design a learning objective based
on a dissimilarity coefficient between P and Q. The dissimilarity coefficient we employ was first
introduced by Rao [23] and is defined for any non-negative symmetric loss function. Thus, any such
loss can be incorporated in our setting, allowing the user to tailor DISCO Nets to his or her needs.
Finally, contrarily to existing probabilistic models presented in Section 2, DISCO Nets do not require
any specific architecture or training procedure, making them an efficient and easy-to-use class of
model.

2 Related Work
Deep neural networks, and in particular, Convolutional Neural Networks (CNNs) are comprised of
several convolutional layers, followed by one or more fully connected (dense) layers, interleaved by
non-linear function(s) and (optionally) pooling. Recent probabilistic models use CNNs to represent
non-linear functions of the data. We observe that such models separate into two types. The first
type of model does not explicitly compute the probability distribution of interest. Rather, these
models allow the user to sample from this distribution by feeding the CNN with some noise z.
Among such models, Generative Adversarial Networks (GAN) presented in Goodfellow et al. [7] are
very popular and have been used in several computer vision applications, for example in Denton
et al. [1], Radford et al. [22], Springenberg [25] and Yan et al. [28]. A GAN model consists of
two networks, simultaneously trained in an adversarial manner. A generative model, referred as
the Generator G, is trained to replicate the data from noise, while an adversarial discriminative
model, referred as the Discriminator D, is trained to identify whether a sample comes from the
true data or from G. The GAN training objective is based on a minimax game between the two
networks and approximately optimizes a Jensen-Shannon divergence. However, as mentioned
in Goodfellow et al. [7] and Radford et al. [22], GAN models require very careful design of the
networks’ architecture. Their training procedure is tedious and tends to oscillate. GAN models have
been generalized to conditional GAN (cGAN) in Mirza and Osindero [16], where some additional
input information can be fed to the Generator and the Discriminator. For example in Mirza and
Osindero [16] a cGAN model generates tags corresponding to an image. Gauthier [4] applies cGAN
to face generation. Reed et al. [24] propose to generate images of flowers with a cGAN model, where
the conditional information is a word description of the flower to generate1. While the application of
cGAN is very promising, little quantitative evaluation has been done. Furthermore, cGAN models
suffer from the same difficulties we mentioned for GAN. Another line of work has developed towards
the use of statistical hypothesis testing to learn probabilistic models. In Dziugaite et al. [2] and Li
et al. [14], the authors propose to train generative deep networks with an objective function based on
the Maximum Mean Discrepancy (MMD) criterion. The MMD method (see Gretton et al. [8, 9]) is
a statistical hypothesis test assessing if two probabilistic distributions are similar. As mentioned
in Dziugaite et al. [2], the MMD test can been seen as playing the role of an adversary.

1At the time writing, we do not have access to the full paper of Reed et al. [24] and therefore cannot take
advantage of this work in our experimental comparison.
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The second type of model approximates intractable posterior distributions with use of varia-
tional inference. The Variational Auto-Encoders (VAE) presented in Kingma and Welling [10] is
composed of a probabilistic encoder and a probabilistic decoder. The probabilistic encoder is
fed with the input x ∈ X and produces a posterior distribution P (z|x) over the possible values
of noise z that could have generated x. The probabilistic decoder learns to map the noise z back
to the data space X . The training of VAE uses an objective function based on a Kullback-Leibler
Divergence. VAE and GAN models have been combined in Makhzani et al. [15], where the authors
propose to regularise autoencoders with an adversarial network. The adversarial network ensures that
the posterior distribution P (z|x) matches an arbitrary prior P (z).

In hand pose estimation, imagine the user wants to obtain accurate positions of the thumb
and the index finger but does not need accurate locations of the other fingers. The task loss ∆task
might be based on a weighted L2-norm between the predicted and the ground-truth poses, with high
weights on the thumb and the index. Existing probabilistic models cannot be tailored to task-specific
losses and we propose the DISsimilarity COefficient Networks (DISCO Nets) to alleviate this
deficiency.

3 DISCO Nets
We begin the description of our model by specifying how it can be used to generate samples from the
posterior distribution, and how the samples can in turn be employed to provide a pointwise estimate.
In the subsequent subsection, we describe how to estimate the parameters of the model.

3.1 Prediction
Sampling. A DISCO Net consists of several convolutional and dense layers (interleaved by non-
linear function(s) and possibly pooling) and takes as input a pair (x, z) ∈ X × Z , where x is input
data and z is some random noise. Given one pair (x, z), the DISCO Net produces a value for the
output y. In the example of hand pose estimation, the input depth image x is fed to the convolutional
layers. The output of the last convolutional layer is flattened and concatenated with a noise sample z.
The resulting vector is fed to several dense layers, and the last dense layer outputs a pose y. From
a single depth image x, by using different noise samples, the DISCO Net produces different pose
candidates for the depth image. This process is illustrated in Figure 2. Importantly, DISCO Nets are
flexible in the choice of the architecture. For example, the noise could be concatenated at any stage
of the network, including at the start.

Figure 2: For a single depth image x, using 3 different noise samples (z1,z2,z3), DISCO Nets output 3 different
candidate poses (y1,y2,y3) (shown superimposed on the depth image). The depth image is from the NYU Hand
Pose Dataset of Tompson et al. [27], preprocessed as in Oberweger et al. [17]. Best viewed in color.

We denote Q the distribution that is parametrised by the DISCO Net’s neural network. For a given
input x, DISCO Nets provide the user with samples y drawn from Q(y|x) without requiring the
expensive computation of the (often intractable) partition function. In the remainder of the paper we
consider x ∈ Rdx ,y ∈ Rdy and z ∈ Rdz .

Pointwise Prediction. In order to obtain a single prediction y for a given input x, DISCO Nets
use the principle of Maximum Expected Utility (MEU), similarly to Premachandran et al. [21].
The prediction y∆task maximises the expected utility, or rather minimises the expected task-specific
loss ∆task, estimated using the sampled candidates. Formally, the prediction is made as follows:
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y∆task = argmax
k∈[1,K]

EU(yk) = argmin
k∈[1,K]

K∑
k′=1

∆task(yk,y
′
k) (1)

where (y1, ...,yK) are the candidate outputs sampled for the single input x. Details on the MEU
method are in the supplementary material.

3.2 Learning DISCO Nets

Objective Function. We want DISCO Nets to accurately model the true probability P (y|x)
via Q(y|x). In other words, Q(y|x) should be as similar as possible to P (y|x). This similar-
ity is evaluated with respect to the loss specific to the task at hand. Given any non-negative symmetric
loss function between two outputs ∆(y,y′) with (y,y′) ∈ Y × Y , we employ a diversity coefficient
that is the expected loss between two samples drawn randomly from the two distributions. Formally,
the diversity coefficient is defined as:

DIV∆(P,Q,D) = Ex∼D(x)[Ey∼P (y|x)[Ey′∼Q(y′|x)[∆(y,y′)]]] (2)

Intuitively, we should minimise DIV∆(P,Q,D) so that Q(y|x) is as similar as possible to P (y|x).
However there is uncertainty on the output y to predict for a given x. In other words, P (y|x) is
diverse and Q(y|x) should be diverse as well. Thus we encourage Q(y|x) to provide sample outputs,
for a given x, that are diverse by minimising the following dissimilarity coefficient:

DISC∆(P,Q,D) = DIV∆(P,Q,D)− γDIV∆(Q,Q,D)− (1− γ)DIV∆(P, P,D) (3)

with γ ∈ [0, 1]. The dissimilarity DISC∆(P,Q,D) is the difference between the diversity between P
and Q, and an affine combination of the diversity of each distribution, given x ∼ D(x). These
coefficients were introduced by Rao [23] with γ = 1/2 and used for latent variable models by Kumar
et al. [11]. We do not need to consider the term DIV∆(P, P,D) as it is a constant in our problem,
and thus the DISCO Nets objective function is defined as follows:

F = DIV∆(P,Q,D)− γDIV∆(Q,Q,D) (4)

When minimising F , the term γDIV∆(Q,Q,D) encourages Q(y|x) to be diverse. The value of γ
balances between the two goals of Q(y|x) that are providing accurate outputs while being diverse.

Optimisation. Let us consider a training dataset composed of N examples input-output pairs D =
{(xn,yn), n = 1..N}. In order to train DISCO Nets, we need to compute the objective func-
tion of equation (4). We do not have knowledge of the true probability distributions P (y,x)
and P (x). To overcome this deficiency, we construct estimators of each diversity term DIV∆(P,Q)
and DIV∆(Q,Q). First, we take an empirical distribution of the data, that is, taking ground-truth
pairs (xn,yn). We then estimate each distribution Q(y|xn) by sampling K outputs from our model
for each xn. This gives us an unbiased estimate of each diversity term, defined as:

D̂IV∆(P,Q,D) =
1

N

N∑
n=1

1

K

K∑
k=1

∆(yn, G(zk,xn;θ))

D̂IV∆(Q,Q,D) =
1

N

N∑
n=1

1

K(K − 1)

K∑
k=1

K∑
k′=1,k′ 6=k

∆(G(zk,xn;θ), G(zk′ ,xn;θ))

(5)

We have an unbiased estimate of the DISCO Nets’ objective function of equation (4):

F̂ (∆,θ) = D̂IV∆(P,Q,D)− γD̂IV∆(Q,Q,D) (6)

where yk = G(zk,xn;θ) is a candidate output sampled from DISCO Nets for (xn,zk), and θ are the
parameters of DISCO Nets. It is important to note that the second term of equation (6) is summing
over k and k′ 6= k to have an unbiased estimate, therefore we compute the loss between pairs of
different samplesG(zk,xn;θ) andG(zk′ ,xn;θ). The parameters θ are learned by Gradient Descent.
Algorithm 1 shows the training of DISCO Nets. In steps 4 and 5 of Algorithm 1, we draw K random
noise vectors (zn,1, ...zn,k) per input example xn, and generate K candidate outputs G(zn,k,xn;θ)
per input. This allow us to compute an unbiased estimate of the gradient in step 7. For clarity, in the
remainder of the paper we do not explicitely write the parameters θ and write G(zk,xn).
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Algorithm 1: DISCO Nets Training algorithm.
1for t=1...T epochs do
2Sample minibatch of b training example pairs {(x1,y1)...(xb,yb)}.
3for n=1...b do
4Sample K random noise vectors (zn,1, ...zn,k) for training example xn
5Generate K candidate outputs G(zn,k,xn;θ), k = 1..K for training example xn
6end
7Update parameters θt ← θt−1 by descending the gradient of equation (6) : ∇θF̂ (∆,θ).
8end

3.3 Strictly Proper Scoring Rules.
Scoring Rule for Learning. A scoring rule S(Q,P ), as defined in Gneiting and Raftery [5],
evaluates the quality of a predictive distribution Q with respect to a true distribution P . When using
a scoring rule one should ensure that it is proper, which means it is maximised when P = Q. A
scoring rule is said to be strictly proper if P = Q is the unique maximiser of S. Hence maximising a
proper scoring rule ensures that the model aims at predicting relevant forecast. Gneiting and Raftery
[5] define score divergences corresponding to a proper scoring rule S:

d(Q,P ) = S(P, P )− S(Q,P ) (7)

If S is proper, d is a valid non-negative divergence function, with value 0 if (and only if, in the case
of strictly proper) Q = P . For example the MMD criterion (see Gretton et al. [8, 9]) mentioned
in Section 2 is an example of this type of divergence. In our case, any loss ∆ expressed with an
universal kernel will define the DISCO Nets’ objective function as such divergence (see Zawadzki
and Lahaie [29]). For example, by Theorem 5 of Gneiting and Raftery [5], if we take as loss
function ∆β(y,y′) = ||y − y′||β2 =

∑dy
i=1 |(yi − y′i|2)

β/2 with β ∈ [0, 2] excluding 0 and 2, our
training objective is (the negative of) a strictly proper scoring rule, that is:

F̂ (∆,θ) =
1

N

∑N
n=1

[ 1

K

∑
k ||yn −G(zk,xn)||β2 −

1

2

1

K(K − 1)

∑
k

∑
k′ 6=k ||G(zk′ ,xn)−G(zk,xn)||β2

]
(8)

This score has been referred in the litterature as the Energy Score in Gneiting and Raftery
[5], Gneiting et al. [6], Pinson and Tastu [19].

By employing a (strictly) proper scoring rule we ensure that our objective function is (only)
minimised at the true distribution P , and expect DISCO Nets to generalise better on unseen data.
We show below that strictly proper scoring rules are also relevant to assess the quality of the
distribution Q captured by the model.
Discriminative power of proper scoring rules. As observed in Fukumizu et al. [3], kernel density
estimation (KDE) fails in high dimensional output spaces. Our goal is to compare the quality of the
distribution captured between two models, Q1 and Q2. In our setting Q1 better models P than Q2

according to the scoring rule S and its associated divergence d if d(Q1, P ) < d(Q2, P ). As noted
in Pinson and Tastu [19], S being proper does not ensure d(Q1,y) < d(Q2,y) for all observations y
drawn from P . However if the scoring rule is strictly proper scoring rule, this property should be
ensured in the neighbourhood of the true distribution.

4 Experiments : Hand Pose Estimation
Given a depth image x, which often contains occlusions and missing values, we wish to predict the
hand pose y. We use the NYU Hand Pose dataset of Tompson et al. [27] to estimate the efficiency of
DISCO Nets for this task.

4.1 Experimental Setup
NYU Hand Pose Dataset. The NYU Hand Pose dataset of Tompson et al. [27] contains 8252
testing and 72,757 training frames of captured RGBD data with ground-truth hand pose information.
The training set is composed of images of one person whereas the testing set gathers samples from
two persons. For each frame, the RGBD data from 3 Kinects is provided: a frontal view and 2 side
views. In our experiments we use only the depth data from the frontal view. While the ground truth
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contains J = 36 annotated joints, we follow the evaluation protocol of Oberweger et al. [17, 18] and
use the same subset of J = 14 joints. We also perform the same data preprocessing as in Oberweger
et al. [17, 18], and extract a fixed-size metric cube around the hand from the depth image. We resize
the depth values within the cube to a 128× 128 patch and normalized them in [−1, 1]. Pixels deeper
than the back of the cube and missing depth values are both set to a depth of 1.

Methods. We employ loss functions between two outputs of the form of the Energy score (8), that
is, ∆training = ∆β(y,y′) = ||y − y′||β2 . Our first goal is to assess the advantages of DISCO Nets
with respect to non-probabilistic deep networks. One model, referred as DISCOβ,γ , is a DISCO Nets
probabilistic model, with γ 6= 0 in the dissimilarity coefficient of equation (6). When taking γ = 0,
noise is injected and the model capacity is the same as DISCOβ,γ 6=0. The model BASEβ , is a
non-probabilistic model, by taking γ = 0 in the objective function of equation (6) and no noise is
concatenated. This corresponds to a classic deep network which for a given input x generates a single
output y = G(x). Note that we write G(x) and not G(z,x) since no noise is concatenated.

Evaluation Metrics. We report classic non-probabilistic metrics for hand pose estimation employed
in Oberweger et al. [17, 18] and Taylor et al. [26], that are, the Mean Joint Euclidean Error (MeJEE),
the Max Joint Euclidean Error (MaJEE) and the Fraction of Frames within distance (FF). We refer
the reader to the supplementary material for detailed expression of these metrics. These metrics use
the Euclidean distance between the prediction and the ground-truth and require a single pointwise
prediction. This pointwise prediction is chosen with the MEU method among K candidates. We
added the probabilistic metric ProbLoss. ProbLoss is defined as in Equation 8 with the Euclidean
norm and is the divergence associated with a strictly proper scoring rule. Thus, ProbLoss ranks the
ability of the models to represent the true distribution. ProbLoss is computed using K candidate
poses for a given depth image. For the non-probabilistic model BASEβ , only a single pointwise
predicted output y is available. We construct the K candidates by adding some Gaussian random
noise of mean 0 and diagonal covariance Σ = σ1, with σ ∈ {1mm, 5mm, 10mm} and refer to the
model as BASEβ,σ . 2

Loss functions. As we employ standard evaluation metrics based on the Euclidean norm, we train
with the Euclidean norm (that is, ∆training(y,y′) = ||y − y′||β2 with β = 1). When γ = 1

2 our
objective function coincides with ProbLoss.

Architecture. The novelty of DISCO Nets resides in their objective function. They do not require
the use of a specific network architecture. This allows us to design a simple network architecture
inspired by Oberweger et al. [18]. The architecture is shown in Figure 2. The input depth image x
is fed to 2 convolutional layers, each having 8 filters, with kernels of size 5 × 5, with stride 1,
followed by Rectified Linear Units (ReLUs) and Max Pooling layers of kernel size 3× 3. A third
and last convolutional layer has 8 filters, with kernels of size 5 × 5, with stride 1, followed by a
Rectified Linear Unit. The ouput of the convolution is concatenated to the random noise vector z
of size dz = 200, drawn from a uniform distribution in [−1, 1]. The result of the concatenation
is fed to 2 dense layers of output size 1024, with ReLUs, and a third dense layer that outputs the
candidate pose y ∈ R3×J . For the non-probabilistic BASEβ,σ model no noise is concatenated as
only a pointwise estimate is produced.

Training. We use 10,000 examples from the 72,757 training frames to construct a validation
dataset and train only on 62,757 examples. Back-propagation is used with Stochastic Gradient
Descent with a batchsize of 256. The learning rate is fixed to λ = 0.01 and we use a momentum
of m = 0.9 (see Polyak [20]). We also add L2-regularisation controlled by the parameter C. We
use C = [0.0001, 0.001, 0.01] which is a relevant range as the comparative model BASEβ is best
performing for C = 0.001. Note that DISCO Nets report consistent performances across the different
values C, contrarily to BASEβ . We use 3 different random seeds to initialize each model network
parameters. We report the performance of each model with its best cross-validated seed and C. We
train all models for 400 epochs as it results in a change of less than 3% in the value of the loss on the
validation dataset for BASEβ . We refer the reader to the supplementary material for details on the
setting.

2We also evaluate the non-probabilistic model BASEβ using its pointwise prediction rather than the MEU
method. Results are consistent and detailed in the supplementary material.
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Table 2: Metrics values on the test set ± SEM. Best
performances in bold.
Model ProbLoss (mm) MeJEE (mm) MaJEE (mm) FF (80mm)
BASEβ=1,σ=1 103.8±0.627 25.2±0.152 52.7±0.290 86.040
BASEβ=1,σ=5 99.3±0.620 25.5±0.151 52.9±0.289 85.773
BASEβ=1,σ=10 96.3±0.612 25.7±0.149 53.2±0.288 85.664
DISCOβ=1,γ=0 92.9±0.533 21.6±0.128 46.0±0.251 92.971
DISCOβ=1,γ=0.25 89.9±0.510 21.2±0.122 46.4±0.252 93.262
DISCOβ=1,γ=0.5 83.8 ±0.503 20.9±0.124 45.1±0.246 94.438

Table 3: Metrics values on the test set ± SEM for
cGAN.
Model ProbLoss (mm) MeJEE (mm) MaJEE (mm) FF (80mm)
cGAN 442.7±0.513 109.8±0.128 201.4±0.320 0.000
cGANinit, fixed 128.9±0.480 31.8±0.117 64.3±0.230 78.454

4.2 Results.
Quantitative Evaluation. Table 2 reports performances on the test dataset, with parameters cross-
validated on the validation set. All versions of the DISCO Net model outperform the BASEβ model.
Among the different values of γ, we see that γ = 0.5 better captures the true distribution (lower
ProbLoss) while retaining accurate performance on the standard pointwise metrics. Interestingly,
using an all-zero noise at test-time gives similar performances on pointwise metrics. We link this to
the observation that both the MEAN and the MEU method perform equivalently on these metrics
(see supplementary material).

Qualitative Evaluation. In Figure 3 we show candidate poses generated by DISCOβ=1,γ=0.5 for
3 testing examples. The left image shows the input depth image, and the right image shows the
ground-truth pose (in grey) with 100 candidate outputs (superimposed in transparent red). The model
predict the joint locations and we interpolate the joints with edges. If an edge is thinner and more
opaque, it means the different predictions overlap and that the uncertainty on the location of the
edge’s joints is low. We can see that DISCOβ=1,γ=0.5 captures relevant information on the structure
of the hand.

(a) When there are no occlusions,
DISCO Nets model low uncer-
tainty on all joints.

(b) When the hand is half-fisted,
DISCO Nets model the uncer-
tainty on the location of the fin-
gertips.

(c) Here the fingertips of all fin-
gers but the forefinger are oc-
cluded and DISCO Nets model
high uncertainty on them.

Figure 3: Visualisation of DISCOβ=1,γ=0.5 predictions for 3 examples from the testing dataset. The left image
shows the input depth image, and the right image shows the ground-truth pose in grey with 100 candidate outputs
superimposed in transparent red. Best viewed in color.

Figure 4 shows the matrices of Pearson product-moment correlation coefficients between joints. We
note that DISCO Net with γ = 0.5 better captures the correlation between the joints of a finger and
between the fingers.
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Figure 4: Pearson coefficients matrices of the joints: Palm (no value as the empirical variance is null), Palm
Right, Palm Left, Thumb Root, Thumb Mid, Index Mid, Index Tip, Middle Mid, Middle Tip, Ring Mid, Ring Tip,
Pinky Mid, Pinky Tip.
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4.3 Comparison with existing probabilistic models.
To the best of our knowledge the conditional Generative Adversarial Networks (cGAN) from Mirza
and Osindero [16] has not been applied to pose estimation. In order to compare cGAN to DISCO Nets,
several issues must be overcome. First, we must design a network architecture for the Discriminator.
This is a first disadvantage of cGAN compared to DISCO Nets which require no adversary. Second,
as mentioned in Goodfellow et al. [7] and Radford et al. [22], GAN (and thus cGAN) require very
careful design of the networks’ architecture and training procedure. In order to do a fair comparison,
we followed the work in Mirza and Osindero [16] and practical advice for GAN presented in Larsen
and Sønderby [13]. We try (i) cGAN, initialising all layers of D and G randomly, and (ii) cGANinit, fixed
initialising the convolutional layers of G and D with the trained best-performing DISCOβ=1,γ=0.5

of Section 4.2, and keeping these layers fixed. That is, the convolutional parts of G and D are fixed
feature extractors for the depth image. This is a setting similar to the one employed for tag-annotation
of images in Mirza and Osindero [16]. Details on the setting can be found in the supplementary
material. Table 3 shows that the cGAN model obtains relevant results only when the convolutional
layers of G and D are initialised with our trained model and kept fixed, that is cGANinit, fixed. These
results are still worse than DISCO Nets performances. While there may be a better architecture for
cGAN, our experiments demonstrate the difficulty of training cGAN over DISCO Nets.

4.4 Reference state-of-the-art values.
We train the best-performing DISCOβ=1,γ=0.5 of Section 4.2 on the entire dataset, and compare
performances with state-of-the-art methods in Table 4 and Figure 5. These state-of-the-art methods
are specifically designed for hand pose estimation. In Oberweger et al. [17] a constrained prior hand
model, referred as NYU-Prior, is refined on each hand joint position to increase accuracy, referred
as NYU-Prior-Refined. In Oberweger et al. [18], the input depth image is fed to a first network
NYU-Init, that outputs a pose used to synthesize an image with a second network. The synthesized
image is used with the input depth image to derive a pose update. We refer to the whole model as
NYU-Feedback. On the contrary, DISCO Nets uses a single network whose architecture is similar
to NYU-Prior (without constraining on a pose prior). By accurately modeling the distribution of
the pose given the depth image, DISCO Nets obtain comparable performances to NYU-Prior and
NYU-Prior-Refined. Without any extra effort, DISCO Nets could be embedded in the presented
refinement and feedback methods, possibly boosting state-of-the-art performances.

Table 4: DISCO Nets compared to state-
of-the-art performances ± SEM.

Model MeJEE (mm) MaJEE (mm) FF (80mm)
NYU-Prior 20.7±0.150 44.8±0.289 91.190
NYU-Prior-Refined 19.7±0.157 44.7±0.327 88.148
NYU-Init 27.4±0.152 55.4±0.265 86.537
NYU-Feedback 16.0±0.096 36.1±0.208 97.334
DISCOβ=1,γ=0.5 20.7±0.121 45.1±0.246 93.250

Figure 5: Fractions of frames within distance d in mm (by 5 mm). Best
viewed in color.

5 Discussion.
We presented DISCO Nets, a new family of probabilistic model based on deep networks. DISCO Nets
employ a prediction and training procedure based on the minimisation of a dissimilarity coefficient.
Theoretically, this ensures that DISCO Nets accurately capture uncertainty on the correct output
to predict given an input. Experimental results on the task of hand pose estimation consistently
support our theoretical hypothesis as DISCO Nets outperform non-probabilistic equivalent models,
and existing probabilistic models. Furthermore, DISCO Nets can be tailored to the task to perform.
This allows a possible user to train them to tackle different problems of interest. As their novelty
resides mainly in their objective function, DISCO Nets do not require any specific architecture and
can be easily applied to new problems. We contemplate several directions for future work. First, we
will apply DISCO Nets to other prediction problems where there is uncertainty on the output. Second,
we would like to extend DISCO Nets to latent variables models, allowing us to apply DISCO Nets to
diverse dataset where ground-truth annotations are missing or incomplete.
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