{"id":278247,"date":"2016-08-25T10:38:16","date_gmt":"2016-08-25T17:38:16","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-event&p=278247"},"modified":"2020-01-20T13:05:09","modified_gmt":"2020-01-20T21:05:09","slug":"new-england-machine-learning-day-2015","status":"publish","type":"msr-event","link":"https:\/\/www.microsoft.com\/en-us\/research\/event\/new-england-machine-learning-day-2015\/","title":{"rendered":"New England Machine Learning Day 2015"},"content":{"rendered":"
Venue: <\/strong>Microsoft Research New England<\/a> The fourth annual New England Machine Learning Day will be Monday, May 18, 2015, at Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142. The event will bring together local academics and researchers in machine learning and its applications.<\/p>\n","protected":false},"featured_media":381722,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","msr_startdate":"2015-05-18","msr_enddate":"2015-05-18","msr_location":"Cambridge, MA, USA","msr_expirationdate":"","msr_event_recording_link":"","msr_event_link":"","msr_event_link_redirect":false,"msr_event_time":"9:00 AM","msr_hide_region":false,"msr_private_event":true,"footnotes":""},"research-area":[13556],"msr-region":[197900],"msr-event-type":[197944],"msr-video-type":[],"msr-locale":[268875],"msr-program-audience":[],"msr-post-option":[],"msr-impact-theme":[],"class_list":["post-278247","msr-event","type-msr-event","status-publish","has-post-thumbnail","hentry","msr-research-area-artificial-intelligence","msr-region-north-america","msr-event-type-hosted-by-microsoft","msr-locale-en_us"],"msr_about":"Venue: <\/strong>Microsoft Research New England<\/a>\r\nHorace Mann Conference Room\r\nFirst Floor Conference Center\r\nOne Memorial Drive\r\nCambridge, MA\u00a002142","tab-content":[{"id":0,"name":"About","content":"The fourth annual New England Machine Learning Day will be Monday, May 18, 2015, at Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142. The event will bring together local academics and researchers in machine learning and its applications. There will be a lively poster session during lunch. See the agenda tab for the list of presentations.\r\n
\nHorace Mann Conference Room
\nFirst Floor Conference Center
\nOne Memorial Drive
\nCambridge, MA\u00a002142<\/p>\n","protected":false},"excerpt":{"rendered":"Related events<\/h2>\r\n
\r\n
\r\n\r\n
\r\n \r\nPoster Title\u00a0<\/strong><\/td>\r\n Presenting Author\/\r\nComplete List of Authors<\/strong><\/td>\r\n<\/tr>\r\n \r\n Supersparse Linear Integer Models for Optimized Medical Scoring Systems<\/td>\r\n Berk Ustun, MIT\/Berk Ustun, Cynthia Rudin<\/td>\r\n<\/tr>\r\n \r\n A Robotic Grasping System With Bandit-Based Adaptation\r\n\r\n <\/td>\r\n John Oberlin, Brown University\/John Oberlin, Stefanie Tellex<\/td>\r\n<\/tr>\r\n \r\n Reliable and scalable variational inference for the hierarchical Dirichlet process\r\n\r\n <\/td>\r\n Michael C. Hughes, Brown University\/Michael C. Hughes, Dae Il Kim, Erik B. Sudderth<\/td>\r\n<\/tr>\r\n \r\n Learning Propositional Functions in Large State Spaces for Planning and Reinforcement Learning\r\n\r\n <\/td>\r\n David Hershkowitz, Brown University, Computer Science Department (undergrad)\/D. Ellis Hershkowitz, James MacGlashan, Stefanie Tellex<\/td>\r\n<\/tr>\r\n \r\n Optimization as Estimation with Gaussian Process Bandits<\/td>\r\n Zi Wang, CSAIL, MIT\/Zi Wang, Stefanie Jegelka, Leslie Pack Kaelbling, Tom\u00e1s Lozano-P\u00e9rez\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Estimating the Partition Function by Discriminance Sampling\r\n\r\n <\/td>\r\n Qiang Liu, MIT\/Qiang Liu, Jian Peng, Alexander Ihler, John Fisher<\/td>\r\n<\/tr>\r\n \r\n Preserving Modes and Messages via Diverse Particle Selection<\/td>\r\n Jason L. Pacheco, Brown\/Jason L. Pacheco, Silvia Zuffi, Michael J. Black, Erik B. Sudderth\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Data Mining Methods for Analyzing and Modeling Spatiotemporal Data\r\n\r\n <\/td>\r\n Dawei Wang, UMass Boston\/Dawei Wang, Wei Ding, Kui Yu<\/td>\r\n<\/tr>\r\n \r\n Bayesian Or?s of And?s for Interpretable Classification, with Application to Context-Aware Recommender Systems<\/td>\r\n Tong Wang, MIT\/Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, Perry MacNeille\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Cheap Bandits<\/td>\r\n Manjesh Hanawal, BU\/Manjesh K Hanawal, Venkatesh Saligrama\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Modeling and Prediction of Diabetes-Related Hospitalizations Using Electronic Health Records\r\n\r\n <\/td>\r\n Tingting Xu, BU\/Theodora S. Brisimi, Tingting Xu, Ioannis Ch. Paschalidis\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Adding Expert Knowledge in Sparse Learning of High Dimensional Diffusion Data in Traumatic Brain Injury\r\n\r\n <\/td>\r\n Matineh Shaker, Northeastern\/Matineh Shaker, Deniz Erdogmus, Jennifer Dy, Sylvain Bouix<\/td>\r\n<\/tr>\r\n \r\n Machine Learning and Dynamic Programming Algorithms for Motion Planning and Control\r\n\r\n <\/td>\r\n Oktay Arslan, Georgia Tech\/Oktay Arslan, Panagiotis Tsiotras<\/td>\r\n<\/tr>\r\n \r\n Vector-Valued Property Elicitation\r\n\r\n <\/td>\r\n Rafael Frongillo, Harvard\/Rafael Frongillo, Ian Kash<\/td>\r\n<\/tr>\r\n \r\n Gradient-based Hyperparameter Optimization through Reversible Learning\r\n\r\n <\/td>\r\n David Duvenaud, Harvard\/Dougal Maclaurin, David Duvenaud, Ryan P. Adams<\/td>\r\n<\/tr>\r\n \r\n Learning Heterogeneous Progression Patterns of Alzheimer's Disease with Clustered Hidden Markov Model\r\n\r\n <\/td>\r\n Chenhui Hu, Harvard\/Chenhui Hu, Xiaoxiao Li, Finale Doshi-Velez, Xue Hua, Paul Thompson, Georges Fakhri, Quanzheng Li<\/td>\r\n<\/tr>\r\n \r\n Exploring Collections with Interactive Spatial Organization\r\n\r\n <\/td>\r\n Kenneth C. Arnold, Harvard\/Kenneth C. Arnold, Krzysztof Z. Gajos<\/td>\r\n<\/tr>\r\n \r\n ChordRipple: More Creative Chord Recommendations with chord2vec\r\n\r\n <\/td>\r\n Anna Huang, Harvard\/Cheng-Zhi Anna Huang, David Duvenaud, Krzysztof Z. Gajos<\/td>\r\n<\/tr>\r\n \r\n Stability and optimality in stochastic gradient descent\r\n\r\n <\/td>\r\n Dustin Tran, Harvard\/Dustin Tran, Panos Toulis, Edoardo M. Airoldi<\/td>\r\n<\/tr>\r\n \r\n Multi-Level Dirichlet Priors for Modelling Topical Variations across Textual Regions<\/td>\r\n Kriste Krstovski, Harvard-Smithsonian Center for Astrophysics\/Kriste Krstovski, David A. Smith, Michael J. Kurtz\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Scalable Bayesian Nonparametric Policy Learning in Dec-POMDPs<\/td>\r\n Miao Liu, MIT LIDS\/Miao Liu, Chris Amato, Jonathan P. How\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Measuring semantics assumptions\r\n\r\n <\/td>\r\n Andrea Censi, MIT\/Andrea Censi<\/td>\r\n<\/tr>\r\n \r\n SQUARE: A Benchmark for Consensus Algorithms in Crowdsourcing\r\n\r\n <\/td>\r\n Matt Lease, University of Texas at Austin\/Matthew Lease, Aashish Sheshadri<\/td>\r\n<\/tr>\r\n \r\n A Nearly-Linear Time Framework for Graph-Structured Sparsity<\/td>\r\n Chinmay Hegde, MIT\/Chinmay Hegde, Piotr Indyk, Ludwig Schmidt\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Sample-Optimal Density Estimation in Nearly-Linear Time<\/td>\r\n Jerry Li, MIT\/Jayadev Acharya, Ilias Diakonikolas, Jerry Li, Ludwig Schmidt\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n A Nearly Optimal and Agnostic Algorithm for Properly Learning a Mixture of k Gaussians, for any Constant k\r\n\r\n <\/td>\r\n Ludwig Schmidt, MIT\/Jerry Li, Ludwig Schmidt<\/td>\r\n<\/tr>\r\n \r\n Nonparametric Bayesian Inference of Strategy in Infinitely Repeated Games<\/td>\r\n Max Kleiman-Weiner, MIT\/Max Kleiman-Weiner, Penghui Zhou, Joshua B. Tenenbaum\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Perturbation Training for Human-Robot Teams\r\n\r\n <\/td>\r\n Ramya Ramakrishnan, MIT\/Ramya Ramakrishnan, Chongjie Zhang, Julie A. Shah<\/td>\r\n<\/tr>\r\n \r\n Fixed-point algorithms for learning Determinantal Point Processes\r\n\r\n <\/td>\r\n Zelda Mariet, MIT\/Zelda Mariet, Suvrit Sra\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Object-based World Modeling with Dependent Dirichlet Process Mixtures\r\n\r\n <\/td>\r\n Lawson Wong, MIT CSAIL\/Lawson L.S. Wong, Thanard Kurutach, Leslie Pack Kaelbling,\u00a0Tom\u00e1s Lozano-P\u00e9rez<\/td>\r\n<\/tr>\r\n \r\n Handwritten Tamil Character Recognition using a Convolutional Neural Network\r\n\r\n <\/td>\r\n Misha Sra, MIT Media lab\/Prashanth Vijayaraghavan, Misha Sra<\/td>\r\n<\/tr>\r\n \r\n Computing Sparse\/Low-rank\/Structured Optimization Solutions using an Extension of the Frank-Wolfe Method, with Application to Matrix Completion\r\n\r\n <\/td>\r\n Paul Grigas, MIT Operations Research Center\/Robert M. Freund, Paul Grigas, Rahul Mazumder<\/td>\r\n<\/tr>\r\n \r\n A Sparse Combined Regression-Classification Formulation for Learning a Physiological Alternative to Clinical Post-Traumatic Stress Disorder Scores\r\n\r\n <\/td>\r\n Sarah Brown, Northeastern University\/Sarah Brown, Rami Mangoubi, Andrea Webb, Jennifer Dy<\/td>\r\n<\/tr>\r\n \r\n RSVP Keyboard A Brain Computer Interface for AAC Technology\r\n\r\n <\/td>\r\n Paula Gonzalez, Northeastern University\/U. Orhan, M. Moghadamfalahi, P. Gonzalez-Navarro, B. Girvent, A. Ahani, M. Haghighi, B. Peters, A. Mooney, A. Fowler, K. Gorman, S. Bedrick, B. Oken, M. Akcakaya, M. Fried-Oken, D. Erdogmus\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Personality Prediction in Heterogeneous Social Networks with Incomplete Attributes\r\n\r\n <\/td>\r\n Yuan Zhong, Northeastern University\/Yuan Zhong, Yizhou Sun, Wen Zhong, Rui Dong, Yupeng Gu<\/td>\r\n<\/tr>\r\n \r\n Clustering and Ranking in Heterogeneous Information Networks via Gamma-Poisson Model\r\n\r\n <\/td>\r\n Junxiang Chen, Northeastern University\/Junxiang Chen, Wei Dai, Yizhou Sun, Jennifer Dy<\/td>\r\n<\/tr>\r\n \r\n Efficient exploration of large molecular spaces with artificial neural networks\r\n\r\n <\/td>\r\n Edward Pyzer-Knapp, Harvard\/Jos\u201a Miguel Hern ndez-Lobato, Edward Pyzer-Knapp, Ryan Adams, Al n Aspuru-Guzik\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Sparse Variational Inference for Generalized Gaussian Process Models<\/td>\r\n Rishit Seth, Tufts University\/Rishit Sheth, Bernie Wang, Roni Khardon<\/td>\r\n<\/tr>\r\n \r\n Method of Moments Learning for Left to Right Hidden Markov Models\r\n\r\n <\/td>\r\n Cem S\u0081bakan, UIUC CS department\/Cem Subakan, Johannes Traa, Paris Smaragdis, Daniel Hsu<\/td>\r\n<\/tr>\r\n \r\n Concurrent and Incremental Transfer Learning in a Network of Reinforcement Learning Agents<\/td>\r\n Dan Garant, University of Massachusetts-Amherst\/Dan Garant, Bruno Castro da Silva, Victor Lesser, Chongjie Zhang<\/td>\r\n<\/tr>\r\n \r\n Alternative approaches to discovering causality with additive noise models\r\n\r\n <\/td>\r\n Kaleigh Clary, University of Massachusetts-Amherst\/ Kaleigh Clary, David Jensen\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Cancer Subtype Discovery Using Machine Learning<\/td>\r\n Henry Lo, University of Massachusetts-Boston\/Henry Lo, Melissa Cruz, Dawei Wang, Wei Ding, Marieke Kuijjer, Heather Selby, John Quackenbush<\/td>\r\n<\/tr>\r\n \r\n Inferring Polyadic Events With Poisson Tensor Factorization\r\n\r\n <\/td>\r\n Aaron Schein, University of Massachusetts-Amherst\/Aaron Schein, John Paisley, David M. Blei, Hanna M. Wallach\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Towards understanding the Boundary Forest Algorithm<\/td>\r\n Charles Mathy, Disney Research\/Jose Bento, Charles Mathy, Dan Schmidt<\/td>\r\n<\/tr>\r\n \r\n Predictive Entropy Search for Bayesian Optimization with Unknown Constraints\r\n\r\n <\/td>\r\n Michael Gelbart, Harvard\/Jos\u201a Miguel Hern ndez-Lobato, Michael Gelbart, Matt Hoffman, Ryan Adams, Zoubin Ghahramani\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Model Selection by Linear Programming\r\n\r\n <\/td>\r\n Tolga Bolukbasi, BU\/Joseph Wang, Tolga Bolukbasi, Kirill Trapeznikov, Venkatesh Saligrama\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n Bag of Words Approach to Activity Classification<\/td>\r\n Kevin Amaral, Northeastern\/Kevin M. Amaral, Wei Ding, Scott E. Crouter, Ping Chen\r\n\r\n <\/td>\r\n<\/tr>\r\n \r\n NeurOS and NeuroBlocks:\u00ff A Neural\/Cognitive Operating System and Building Blocks<\/td>\r\n Lee Scheffler, Cognitivity\/Lee Scheffler<\/td>\r\n<\/tr>\r\n \r\n Feature-Budgeted Random Forest<\/td>\r\n Feng Nan, Boston University\/Feng Nan, Joseph Wang, Venkatesh Saligrama<\/td>\r\n<\/tr>\r\n<\/tbody>\r\n<\/table>\r\n \r\n\r\nFor any questions, please contact us here<\/a>."},{"id":3,"name":"Committee","content":"Carla Brodley, Northeastern\r\nFinale Doshi-Velez, Harvard\r\nStefanie Jegelka, MIT\r\nAdam Tauman Kalai<\/a>, Microsoft Research\r\n\r\nThe steering committee that selects the organizers of ML Day each year consists of Ryan Adams, Sham Kakade, Adam\u00a0Tauman Kalai, and Joshua Tenenbaum."}],"msr_startdate":"2015-05-18","msr_enddate":"2015-05-18","msr_event_time":"9:00 AM","msr_location":"Cambridge, MA, USA","msr_event_link":"","msr_event_recording_link":"","msr_startdate_formatted":"May 18, 2015","msr_register_text":"Watch now","msr_cta_link":"","msr_cta_text":"","msr_cta_bi_name":"","featured_image_thumbnail":"","event_excerpt":"The fourth annual New England Machine Learning Day will be Monday, May 18, 2015, at Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142. The event will bring together local academics and researchers in machine learning and its applications.","msr_research_lab":[199563],"related-researchers":[],"msr_impact_theme":[],"related-academic-programs":[],"related-groups":[],"related-projects":[],"related-opportunities":[],"related-publications":[],"related-videos":[],"related-posts":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event\/278247"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-event"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event\/278247\/revisions"}],"predecessor-version":[{"id":565533,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event\/278247\/revisions\/565533"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media\/381722"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=278247"}],"wp:term":[{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=278247"},{"taxonomy":"msr-region","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-region?post=278247"},{"taxonomy":"msr-event-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event-type?post=278247"},{"taxonomy":"msr-video-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video-type?post=278247"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=278247"},{"taxonomy":"msr-program-audience","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-program-audience?post=278247"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=278247"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=278247"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}