\r\nLanguage<\/strong><\/td>\r\nGMM-HMM<\/strong><\/td>\r\nDNN<\/strong><\/td>\r\nTDNN<\/strong><\/td>\r\n<\/tr>\r\n\r\nTamil<\/td>\r\n | \u00a033.55<\/td>\r\n | \u00a025.47<\/td>\r\n | \u00a019.45<\/td>\r\n<\/tr>\r\n | \r\nTelugu<\/td>\r\n | \u00a040.12<\/td>\r\n | \u00a034.97<\/td>\r\n | \u00a022.61<\/td>\r\n<\/tr>\r\n | \r\nGujarati<\/td>\r\n | \u00a023.78<\/td>\r\n | \u00a027.79<\/td>\r\n | \u00a019.76<\/td>\r\n<\/tr>\r\n<\/tbody>\r\n<\/table>"},{"id":5,"name":"Leaderboard","content":"Language: Gujarati<\/strong>\r\n\r\nModels submitted: 40\r\n\r\nNumber of teams: 18\r\n\r\n\r\n\r\nTeam Name<\/strong><\/td>\r\nWord Error Rate<\/strong><\/td>\r\n<\/tr>\r\n\r\nJilebi<\/td>\r\n | 14.06%, 14.70%, 15.04%<\/td>\r\n<\/tr>\r\n | \r\nCogknit<\/td>\r\n | 17.69%<\/td>\r\n<\/tr>\r\n | \r\nISI-Billa<\/td>\r\n | 19.31%<\/td>\r\n<\/tr>\r\n<\/tbody>\r\n<\/table>\r\n \r\n\r\nLanguage: Tamil<\/strong>\r\n\r\nModels submitted: 36\r\n\r\nNumber of teams: 14\r\n\r\n\r\n\r\nTeam Name<\/strong><\/td>\r\nWord Error Rate<\/strong><\/td>\r\n<\/tr>\r\n\r\nJilebi<\/td>\r\n | 13.92%, 14.08%, 14.27%<\/td>\r\n<\/tr>\r\n | \r\nCogknit<\/td>\r\n | 16.07%<\/td>\r\n<\/tr>\r\n | \r\nCSALT-LEAP<\/td>\r\n | 16.32%<\/td>\r\n<\/tr>\r\n<\/tbody>\r\n<\/table>\r\n \r\n\r\nLanguage: Telugu<\/strong>\r\n\r\nModels submitted: 33\r\n\r\nNumber of teams: 18\r\n\r\n\r\n\r\nTeam Name<\/strong><\/td>\r\nWord Error Rate<\/strong><\/td>\r\n<\/tr>\r\n\r\nJilebi<\/td>\r\n | 14.71%, 14.86%, 15.07%<\/td>\r\n<\/tr>\r\n | \r\nCogknit<\/td>\r\n | 17.14%<\/td>\r\n<\/tr>\r\n | \r\nCSALT-LEAP<\/td>\r\n | 17.59%<\/td>\r\n<\/tr>\r\n<\/tbody>\r\n<\/table>\r\n \r\n\r\nNote: Final winners will be determined after verification and replication of results."}],"msr_startdate":"2018-06-17","msr_enddate":"2018-06-17","msr_event_time":"","msr_location":"","msr_event_link":"","msr_event_recording_link":"","msr_startdate_formatted":"June 17, 2018","msr_register_text":"Watch now","msr_cta_link":"","msr_cta_text":"","msr_cta_bi_name":"","featured_image_thumbnail":null,"event_excerpt":"In keeping with the Interspeech 2018 theme of \u2018Speech Research for Emerging Markets in Multilingual Societies\u2019, we\u00a0are organizing\u00a0a special session and challenge on speech recognition for low resource languages. Most languages in the world lack the amount of text, speech and linguistic resources required to build large Deep Neural Network (DNN)-based models. However, there have been many advances in DNN architectures, cross-lingual and multilingual speech processing techniques, and approaches incorporating linguistic knowledge into machine-learning based…","msr_research_lab":[199562],"related-researchers":[],"msr_impact_theme":[],"related-academic-programs":[],"related-groups":[],"related-projects":[],"related-opportunities":[],"related-publications":[],"related-videos":[],"related-posts":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event\/451875"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-event"}],"version-history":[{"count":10,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event\/451875\/revisions"}],"predecessor-version":[{"id":826798,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event\/451875\/revisions\/826798"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=451875"}],"wp:term":[{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=451875"},{"taxonomy":"msr-region","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-region?post=451875"},{"taxonomy":"msr-event-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event-type?post=451875"},{"taxonomy":"msr-video-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video-type?post=451875"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=451875"},{"taxonomy":"msr-program-audience","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-program-audience?post=451875"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=451875"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=451875"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}} | | | | | | | | | | | | | |