{"id":633696,"date":"2020-01-31T16:22:49","date_gmt":"2020-02-01T00:22:49","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-event&p=633696"},"modified":"2020-03-10T10:44:16","modified_gmt":"2020-03-10T17:44:16","slug":"aaai-2020","status":"publish","type":"msr-event","link":"https:\/\/www.microsoft.com\/en-us\/research\/event\/aaai-2020\/","title":{"rendered":"Microsoft at AAAI 2020"},"content":{"rendered":"
Venue:<\/strong> New York Hilton Midtown Hotel (opens in new tab)<\/span><\/a> Website:<\/strong> AAAI 2020 (opens in new tab)<\/span><\/a><\/p>\n","protected":false},"excerpt":{"rendered":" Microsoft is proud to be a sponsor of the Thirty-Fourth AAAI Conference on Artificial Intelligence. Over 50 of our researchers will be at AAAI – stop by our booth to chat with our experts, see demos of our latest research and find out about career opportunities with Microsoft.<\/p>\n","protected":false},"featured_media":634065,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","msr_startdate":"2020-02-07","msr_enddate":"2020-02-12","msr_location":"New York, NY","msr_expirationdate":"","msr_event_recording_link":"","msr_event_link":"","msr_event_link_redirect":false,"msr_event_time":"","msr_hide_region":true,"msr_private_event":false,"footnotes":""},"research-area":[13556],"msr-region":[197900],"msr-event-type":[197941],"msr-video-type":[],"msr-locale":[268875],"msr-program-audience":[],"msr-post-option":[],"msr-impact-theme":[],"class_list":["post-633696","msr-event","type-msr-event","status-publish","has-post-thumbnail","hentry","msr-research-area-artificial-intelligence","msr-region-north-america","msr-event-type-conferences","msr-locale-en_us"],"msr_about":"Venue:<\/strong> New York Hilton Midtown Hotel<\/a>\r\n1335 Avenue of the Americas\r\nNew York, NY 10019\r\n\r\nWebsite:<\/strong> AAAI 2020<\/a>","tab-content":[{"id":0,"name":"About","content":"Microsoft is proud to be a sponsor of the Thirty-Fourth AAAI Conference on Artificial Intelligence<\/a>. Over 50 of our researchers will be at AAAI - stop by our booth to chat with our experts, see demos of our latest research and find out about career opportunities with Microsoft.\r\n
\n1335 Avenue of the Americas
\nNew York, NY 10019<\/p>\nMicrosoft attendees<\/h3>\r\nSaleema Amershi<\/a>\r\nAdam Atkinson<\/a>\r\nDionisia Barkalakis\r\nChristopher Bennage\r\nMichael Betser\r\nBiswarup Bhattacharya\r\nWenfeng Cheng\r\nMurali Chintalapati\r\nNeha Choudhary\r\nYingnong Dang\r\nRui Ding\r\nTony Duan\r\nMarcus Fontoura\r\nAdam Fourney<\/a>\r\nRupert Freeman<\/a>\r\nMichel Galley<\/a>\r\nFeng Gao\r\nJianfeng Gao<\/a>\r\nYeyun Gong\r\nSumit Gulwani<\/a>\r\nDevin Gunson\r\nShi Han<\/a>\r\nMicheleen Harris\r\nMatthew Hausknecht<\/a>\r\nEric Horvitz<\/a>\r\nKori Inkpen<\/a>\r\nLei Ji<\/a>\r\nEce Kamar<\/a>\r\nB\u00f6rje Karlsson<\/a>\r\nRyan Kelly\r\nSean Kuno<\/a>\r\nCuiling Lan<\/a>\r\nMiran Lee\r\nJinchao Li<\/a>\r\nZe Li\r\nNut Limsopatham\r\nChin-Yew Lin<\/a>\r\nJian Lin\r\nMing-Chih Lin\r\nZijia Lin<\/a>\r\nShujie Liu<\/a>\r\nXiaodong Liu<\/a>\r\nShuming Ma<\/a>\r\nVani Mandava<\/a>\r\nDaniel McDuff<\/a>\r\nMeredith Morris<\/a>\r\nBesmira Nushi<\/a>\r\nPeder Olsen\r\nDan O'Neill\r\nHamid Palangi<\/a>\r\nAndi Peng<\/a>\r\nBaolin Peng<\/a>\r\nForough Poursabzi-Sangdeh<\/a>\r\nFarrukh Rahman\r\nNoam Razin<\/a>\r\nHannes Schulz<\/a>\r\nShahin Shayandeh<\/a>\r\nAmy Siebenthaler\r\nJack Stokes\r\nAli Vira\r\nHanna Wallach<\/a>\r\nGuoxin Wang<\/a>\r\nShuohang Wang\r\nWei Wang<\/a>\r\nJenn Wortman Vaughan<\/a>\r\nYingce Xia<\/a>\r\nChenyan Xiong<\/a>\r\nZhangwei Xu\r\nQuanzeng You\r\nWenjun Zeng<\/a>\r\nDongmei Zhang<\/a>\r\nJian Zhang\r\nGuoqing Zheng<\/a>\r\nMengyu Zhou<\/a>"},{"id":1,"name":"Sessions","content":"
Saturday, February 8<\/h2>\r\n
8:30 AM\u201312:30 PM<\/h3>\r\nSA3: Recent Advances in Fair Resource Allocation<\/strong>\r\nRupert Freeman<\/a>,\u00a0Nisarg\u00a0Shah\r\n
8:30 AM\u201310:15 AM<\/h3>\r\nSA5Q: Guidelines for Human-AI Interaction<\/strong>\r\nBesmira Nushi<\/a>,\u00a0Dan Weld,\u00a0Saleema Amershi<\/a>, Adam Fourney<\/a>\r\n
Sunday, February 9<\/h2>\r\n
9:30 AM\u201310:45 AM<\/h3>\r\nTech Session 1: NLP: Entity Recognition and Linking | Trianon\r\nPoster 5015: Enhanced Meta-Learning for Cross-lingual Named Entity Recognition with Minimal Resources<\/strong>\r\nQianhui\u00a0Wu,\u00a0Zijia\u00a0Lin<\/a>,\u00a0Guoxin\u00a0Wang<\/a>,\u00a0Hui Chen,\u00a0Borje\u00a0Karlsson<\/a>,\u00a0Biqing\u00a0Huang,\u00a0Chin-Yew Lin<\/a>\r\n\r\nTech Session 3: NLP: Machine Translation | Sutton North\r\nPoster 3736: Fact-Aware Sentence Split and Rephrase with Permutation Invariant Training<\/strong>\r\nYinuo\u00a0Guo,\u00a0Tao Ge<\/a>,\u00a0Furu\u00a0Wei<\/a>\r\n\r\nTech Session 3: NLP: Machine Translation | Sutton North\r\nPoster 9360: Sequence Generation with Optimal-Transport-Enhanced Reinforcement Learning<\/strong>\r\nLiqun\u00a0Chen,\u00a0Ke\u00a0Bai,\u00a0Chenyang\u00a0Tao,\u00a0Yizhe\u00a0Zhang<\/a>,\u00a0Guoyin\u00a0Wang,\u00a0Wenlin\u00a0Wang,\u00a0Ricardo\u00a0Henao,\u00a0Lawrence Carin Duke\r\n
9:30 AM\u201310:45 AM<\/h3>\r\nTech Session 4: Vision: 3D | Gramercy\r\nPoster 4022: DGCN: Dynamic Graph Convolutional Network for Efficient Multi-Person Pose Estimation<\/strong>\r\nZhongwei\u00a0Qiu,\u00a0Kai\u00a0Qiu<\/a>,\u00a0Jianlong\u00a0Fu<\/a>,\u00a0Dongmei\u00a0Fu\r\n\r\nTech Session 5: ML: Online Learning | Murray Hill\r\nPoster 1687: Stochastic Online Learning with Probabilistic Graph Feedback<\/strong>\r\nShuai Li, Wei Chen<\/a>, Zheng Wen, Kwong-Sak Leong\r\n
11:15 AM\u201312:30 PM<\/h3>\r\nTech Session 4: Vision: Synthesis and Generation | Gramercy\r\nPoster 525: Leveraging Multi-view Image Sets for Unsupervised Intrinsic Image Decomposition and Highlight Separation<\/strong>\r\nRenjiao Yi, Ping Tan, Stephen Lin<\/strong>\r\n\r\nTech Session 5: ML: Neural Nets Theory, Models and Algorithms | Murray Hill\r\nPoster 3914: Model Watermarking for Image Processing Networks<\/strong>\r\nJie Zhang, Dongdong Chen<\/a>, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou, Hao Cui, Nenghai Yu\r\n
2:00 PM\u20133:15 PM<\/h3>\r\nTech Session 1: NLP: Relational Learning | Trianon\r\nOral 1322: Improving Entity Linking by Modeling Latent Entity Type Information<\/strong>\r\nShuang Chen,\u00a0Jinpeng\u00a0Wang<\/a>,\u00a0Feng Jiang,\u00a0Chin-Yew Lin<\/a>\r\n\r\nTech Session 3: NLP: Speech, Syntax and Semantics | Sutton North\r\nPoster 3057: PHASEN: A Phase-and-Harmonics-Aware Speech Enhancement Network<\/strong>\r\nDacheng Yin, Chong Luo<\/a>, Zhiwei Xiong, Wenjun Zeng<\/a>\r\n\r\nTech Session 3: NLP: Speech, Syntax and Semantics | Sutton North\r\nPoster 5343: RobuTrans: A Robust Transformer based Text-to-Speech Model<\/strong>\r\nNaihan Li, Yanqing Liu<\/a>, Yu Wu<\/a>, Shujie Liu<\/a>, Sheng Zhao<\/a>, Ming Liu\r\n\r\nTech Session 4: Vision: Object Detection | Gramercy\r\nPoster 561: Uncertainty-aware Multi-shot Knowledge Distillation for Image-based Object Re-identification<\/strong>\r\nXin Jin, Cuiling Lan<\/a>, Wenjun Zeng<\/a>, Zhibo Chen\r\n\r\nTech Session 4: Vision: Object Detection | Gramercy\r\nPoster 5994: Shallow Feature based Dense Attention Network for Crowd Counting<\/strong>\r\nYunqi Miao, Zijia Lin<\/a>, Guiguang Ding, Jungong Han\r\n\r\nTech Session 6: Vision: Vision + Language | Nassau\r\nPoster 362: Unified Vision-Language Pre-Training for Image Captioning and VQA<\/strong>\r\nLuowei Zhou, Hamid Palangi<\/a>, Lei Zhang<\/a>, Houdong Hu<\/a>, Jason Corso, Jianfeng Gao<\/a>\r\n
3:45 PM\u20135:15 PM<\/h3>\r\nTech Session 3: NLP: Machine Comprehension and Q&A | Sutton North\r\nOral 3330: Graph-Based Reasoning over Heterogeneous External Knowledge for Commonsense Question Answering<\/strong> Shangwen\u00a0Lv,\u00a0Daya\u00a0Guo,\u00a0Jingjing\u00a0Xu,\u00a0Duyu\u00a0Tang<\/a>,\u00a0Nan\u00a0Duan<\/a>,\u00a0Ming Gong<\/a>,\u00a0Linjun Shou<\/a>,\u00a0Daxin Jiang<\/a>,\u00a0Guihong\u00a0Cao<\/a>,\u00a0Songlin\u00a0Hu\r\n\r\nTech Session 3: NLP: Machine Comprehension and Q&A | Sutton North\r\nOral 8941: PIQA: Reasoning about Physical Commonsense in Natural Language<\/strong>\r\nYonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao<\/a>, Yejin Choi\r\n\r\nTech Session 3: NLP: Machine Comprehension and Q&A | Sutton North\r\nPoster 3657: Segment-then-Rank: Non-factoid Question Answering on Instructional Videos<\/strong>\r\nKyungjae Lee, Nan Duan<\/a>, Lei Ji<\/a>, Jason Li<\/strong>, Seungwon Hwang\r\n\r\nTech Session 3: NLP: Machine Comprehension and Q&A | Sutton North\r\nPoster: 6672: Neural Semantic Parsing in Low-Resource Settings with Back-Translation and Meta-Learning<\/strong>\r\nYibo Sun, Duyu Tang<\/a>, Nan Duan<\/a>, Yeyun Gong<\/strong>, Xiaocheng Feng, Bing Qin, Daxin Jiang<\/a>\r\n\r\nTech Session 2: Application: Financial\/Econ, Medical Imaging and Health | Beekman\r\nPoster 3537: Graph-Driven Generative Models for Heterogeneous Multi-Task Learning<\/strong>\r\nWenlin Wang, Hongteng Xu, Zhe Gan<\/a>, Bai Li, Guoyin Wang, Liqun Chen, Qian Yang, Wenqi Wang, Lawrence Carin Duke\r\n
7:30 PM\u20139:30 PM | Poster Session<\/h3>\r\nAPP3537:\u00a0Graph-Driven Generative Models for Heterogeneous Multi-Task Learning<\/strong>\r\nWenlin\u00a0Wang,\u00a0Hongteng\u00a0Xu,\u00a0Zhe\u00a0Gan<\/a>,\u00a0Bai Li,\u00a0Guoyin\u00a0Wang,\u00a0Liqun\u00a0Chen,\u00a0Qian Yang,\u00a0Wenqi\u00a0Wang,\u00a0Lawrence Carin Duke\r\n\r\nML1687:\u00a0Stochastic Online Learning with Probabilistic Graph Feedback<\/strong>\r\nShuai Li,\u00a0Wei Chen<\/a>,\u00a0Zheng Wen,\u00a0Kwong-Sak\u00a0Leong\r\n\r\nML3914:\u00a0Model Watermarking for Image Processing Networks<\/strong>\r\nJie\u00a0Zhang,\u00a0Dongdong\u00a0Chen<\/a>,\u00a0Jing Liao,\u00a0Han Fang,\u00a0Weiming\u00a0Zhang,\u00a0Wenbo\u00a0Zhou,\u00a0Hao Cui,\u00a0Nenghai\u00a0Yu\r\n\r\nNLP3057:\u00a0PHASEN: A Phase-and-Harmonics-Aware Speech Enhancement Network<\/strong>\r\nDacheng\u00a0Yin,\u00a0Chong Luo<\/a>,\u00a0Zhiwei\u00a0Xiong,\u00a0Wenjun Zeng<\/a>\r\n\r\nNLP3657:\u00a0Segment-then-Rank: Non-factoid Question Answering on Instructional Videos<\/strong>\r\nKyungjae\u00a0Lee,\u00a0Nan\u00a0Duan<\/a>,\u00a0Lei Ji<\/a>,\u00a0Jason Li<\/b>,\u00a0Seungwon\u00a0Hwang\r\n\r\nNLP3736: Fact-Aware Sentence Split and Rephrase with Permutation Invariant Training<\/strong>\r\nYinuo\u00a0Guo,\u00a0Tao Ge<\/a>,\u00a0Furu\u00a0Wei<\/a>\r\n\r\nNLP5015: Enhanced Meta-Learning for Cross-lingual Named Entity Recognition with Minimal Resources<\/strong>\r\nQianhui\u00a0Wu,\u00a0Zijia\u00a0Lin<\/a>,\u00a0Guoxin\u00a0Wang<\/a>,\u00a0Hui Chen,\u00a0Borje\u00a0Karlsson<\/a>,\u00a0Biqing\u00a0Huang,\u00a0Chin-Yew Lin<\/a>\r\n\r\nNLP5343:\u00a0RobuTrans:\u00a0A\u00a0Robust Transformer based Text-to-Speech Model<\/strong>\r\nNaihan\u00a0Li,\u00a0Yanqing Liu<\/a>,\u00a0Yu Wu<\/a>,\u00a0Shujie\u00a0Liu<\/a>,\u00a0Sheng Zhao<\/a>,\u00a0Ming Liu\r\n\r\nNLP6672:\u00a0Neural Semantic Parsing in Low-Resource Settings with Back-Translation and Meta-Learning<\/strong>\r\nYibo\u00a0Sun,\u00a0Duyu\u00a0Tang<\/a>,\u00a0Nan\u00a0Duan<\/a>,\u00a0Yeyun\u00a0Gong<\/strong>,\u00a0Xiaocheng\u00a0Feng,\u00a0Bing Qin,\u00a0Daxin Jiang<\/a>\r\n\r\nNLP8941:\u00a0PIQA: Reasoning about Physical Commonsense in Natural Language<\/strong>\r\nYonatan Bisk,\u00a0Rowan Zellers,\u00a0Ronan Le Bras,\u00a0Jianfeng\u00a0Gao<\/a>,\u00a0Yejin\u00a0Choi\r\n\r\nNLP9360: Sequence Generation with Optimal-Transport-Enhanced Reinforcement Learning<\/strong>\r\nLiqun\u00a0Chen,\u00a0Ke\u00a0Bai,\u00a0Chenyang\u00a0Tao,\u00a0Yizhe\u00a0Zhang<\/a>,\u00a0Guoyin\u00a0Wang,\u00a0Wenlin\u00a0Wang,\u00a0Ricardo\u00a0Henao,\u00a0Lawrence Carin Duke\r\n\r\nVIS362:\u00a0Unified Vision-Language\u00a0Pre-Training for Image Captioning and VQA<\/strong>\r\nLuowei\u00a0Zhou,\u00a0Hamid\u00a0Palangi<\/a>,\u00a0Lei Zhang<\/a>,\u00a0Houdong\u00a0Hu<\/a>,\u00a0Jason Corso,\u00a0Jianfeng\u00a0Gao<\/a>\r\n\r\nVIS525:\u00a0Leveraging Multi-view Image Sets for Unsupervised Intrinsic Image Decomposition and Highlight Separation<\/strong>\r\nRenjiao\u00a0Yi,\u00a0Ping Tan,\u00a0Stephen Lin<\/b>\r\n\r\nVIS561:\u00a0Uncertainty-aware Multi-shot Knowledge Distillation for Image-based Object Re-identification<\/strong>\r\nXin\u00a0Jin,\u00a0Cuiling\u00a0Lan<\/a>,\u00a0Wenjun Zeng<\/a>,\u00a0Zhibo\u00a0Chen,\r\n\r\nVIS4022: DGCN: Dynamic Graph Convolutional Network for Efficient Multi-Person Pose Estimation<\/strong>\r\nZhongwei\u00a0Qiu,\u00a0Kai\u00a0Qiu<\/a>,\u00a0Jianlong\u00a0Fu<\/a>,\u00a0Dongmei\u00a0Fu\r\n\r\nVIS5994:\u00a0Shallow Feature based Dense Attention Network for Crowd Counting<\/strong>\r\nYUNQI MIAO,\u00a0Zijia\u00a0Lin<\/a>,\u00a0Guiguang\u00a0Ding,\u00a0Jungong\u00a0Han\r\n
Monday, February 10<\/h2>\r\n
9:30 AM\u201310:45 AM<\/h3>\r\nTech Session 3: NLP: Generation | Sutton North\r\nOral 6824: A Dataset for Low-Resource Stylized Sequence-to-Sequence Generation<\/strong>\r\nYu Wu<\/a>,\u00a0Yunli\u00a0Wang,\u00a0Shujie\u00a0Liu<\/a>\r\n\r\nTech Session 3: NLP: Generation | Sutton North\r\nPoster 6828: Complementary Auxiliary Classifiers for Label-Conditional Text Generation<\/strong>\r\nYuan Li, Chunyuan Li<\/a>, Yizhe Zhang<\/a>, Xiujun Li<\/a>, Guoqing Zheng<\/a>, Lawrence Carin Duke, Jianfeng Gao<\/a>\r\n\r\nTech Session 3: NLP: Generation | Sutton North\r\nPoster 7682: Cross-Lingual Natural Language Generation via Pre-Training<\/strong>\r\nZewen Chi, Li Dong<\/a>, Furu Wei<\/a>, Wenhui Wang<\/a>, Xian-Ling Mao, Heyan Huang\r\n\r\nTech Session 6: ML: Optimization, Neural Architecture Search, and Others | Concourse A\r\nPoster 2073: Light Multi-segment Activation for Model Compression<\/strong>\r\nZhenhui Xu, Guolin Ke<\/a>, Jia Zhang<\/a>, Jiang Bian<\/a>, Tieyan Liu\r\n\r\nTech Session 8: Humans and AI | Clinton\r\nOral 9127: Human-Machine Collaboration for Fast Land Cover Mapping<\/strong>\r\nCaleb Robinson, Anthony Ortiz, Nikolay Malkin, Blake Elias, Andi Peng<\/a>, Dan Morris<\/a>, Bistra Dilkina, Nebojsa Jojic<\/a>\r\n\r\nTech Session 9: Games: Description Languages and NLP | Madison\r\nOral 9405: Interactive Fiction Games: A Colossal Adventure<\/strong>\r\nMatthew Hausknecht<\/a>, Prithviraj Ammanabrolu, Marc-Alexandre C\u00f4t\u00e9<\/a>, Xingdi Yuan<\/a>\r\n
11:15 AM\u201312:30 PM<\/h3>\r\nSession 3: NLP: Machine Translation | Sutton North\r\nPoster 4794: Bridging the Gap between Pre-Training and Fine-Tuning for End-to-End Speech Translation<\/strong>\r\nChengyi Wang, Yu Wu<\/a>, Shujie Liu<\/a>, Zhenglu Yang, Ming Zhou<\/a>\r\n\r\nTech Session 5: ML: Neural Nets Theory, Models and Algorithms | Murray Hill\r\nOral 9804: Differential Equation Units: Learning Functional Forms of Activation Functions from Data<\/strong>\r\nMohamadali Torkamani, Shiv Shankar, Pedram Rooshenas, Philip Wallis<\/strong>\r\n
2:00 PM\u20133:15 PM<\/h3>\r\nTech Session 4: ML: RL and Multiagent RL | Regent\r\nPoster 2312: Learning Agent Communication under Limited Bandwidth by Message Pruning<\/strong>\r\nHangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, Yan Ni<\/a>\r\n\r\nTech Session 3: NLP: Machine Translation\/Vison: Language + Vision | Sutton North\r\nPoster 4133: Unicoder-VL: A Universal Encoder for Vision and Language by Cross-Modal Pre-Training<\/strong>\r\nGen Li, Nan Duan<\/a>, Yuejian Fang, Ming Gong<\/a>, Daxin Jiang<\/a>\r\n
3:45 PM\u20135:15 PM<\/h3>\r\nTech Session 3: NLP: Information Extraction, Retrieval and Text Mining | Sutton North\r\nOral 6492: Simultaneously Linking Entities and Extracting Relations from Biomedical Text without Mention-Level Supervision<\/strong>\r\nTrapit Bansal, Pat Verga, Neha Choudhary<\/strong>, Andrew McCallum\r\n\r\nTech Session 3: NLP: Information Extraction, Retrieval and Text Mining | Sutton North\r\nPoster 7067: Table2Analysis: Modeling and Recommendation of Common Analysis Patterns for Multi-Dimensional Data<\/strong>\r\nMengyu Zhou<\/a>, Tao Wang, Pengxin Ji, Shi Han<\/a>, Dongmei Zhang<\/a>\r\n\r\nTech Session 9: Social Networks, Influence, and Homophily | Clinton\r\nOral 5649: Adaptive Greedy Versus Non-adaptive Greedy for Influence Maximization<\/strong>\r\nWei Chen<\/a>, Binghui Peng, Grant Schoenebeck, Biaoshuai Tao\r\n\r\nTech Session 9: Social Networks, Influence, and Homophily | Clinton\r\nPoster 4623: Gradient Method for Continuous Influence Maximization with Budget-Saving Considerations<\/strong>\r\nWei Chen<\/a>, Weizhong Zhang, Haoyu Zhao\r\n\r\nTech Session 10: Reasoning under Uncertainty | Madison\r\nPoster 3579: Reliable and Efficient Anytime Skeleton Learning<\/strong>\r\nRui Ding<\/strong>, Yanzhi Liu, Jingjing Tian, Zhouyu Fu, Shi Han<\/a>, Dongmei Zhang<\/a>\r\n
7:20 PM\u20139:20 PM\u00a0| Poster Session<\/h3>\r\nAIW4623:\u00a0Gradient Method for Continuous Influence Maximization with Budget-Saving Considerations<\/strong>\r\nWei Chen<\/a>,\u00a0Weizhong\u00a0Zhang,\u00a0Haoyu\u00a0Zhao\r\n\r\nAIW7067:\u00a0Table2Analysis: Modeling and Recommendation of Common Analysis Patterns for Multi-Dimensional Data<\/strong>\r\nMengyu\u00a0Zhou<\/a>,\u00a0Tao Wang,\u00a0Pengxin\u00a0Ji,\u00a0Shi Han<\/a>,\u00a0Dongmei\u00a0Zhang<\/a>\r\n\r\nAPP5649:\u00a0Adaptive Greedy Versus Non-adaptive\u00a0Greedy for Influence Maximization<\/strong>\r\nWei Chen<\/a>,\u00a0Binghui\u00a0Peng,\u00a0Grant\u00a0Schoenebeck,\u00a0Biaoshuai\u00a0Tao\r\n\r\nHAC9127:\u00a0Human-Machine Collaboration for Fast Land Cover Mapping<\/strong>\r\nCaleb Robinson,\u00a0Anthony Ortiz,\u00a0Nikolay\u00a0Malkin,\u00a0Blake Elias,\u00a0Andi Peng<\/a>,\u00a0Dan Morris<\/a>,\u00a0Bistra\u00a0Dilkina,\u00a0Nebojsa\u00a0Jojic<\/a>\r\n\r\nML2073:\u00a0Light Multi-segment Activation for Model Compression<\/strong>\r\nZhenhui\u00a0Xu,\u00a0Guolin\u00a0Ke<\/a>,\u00a0Jia Zhang<\/a>,\u00a0Jiang Bian<\/a>,\u00a0Tieyan\u00a0Liu\r\n\r\nML2312:\u00a0Learning Agent Communication under Limited Bandwidth by Message Pruning<\/strong>\r\nHangyu\u00a0Mao,\u00a0Zhengchao\u00a0Zhang,\u00a0Zhen Xiao,\u00a0Zhibo\u00a0Gong,\u00a0Yan Ni<\/a>\r\n\r\nML9405:\u00a0Interactive Fiction Games: A Colossal Adventure<\/strong>\r\nMatthew\u00a0Hausknecht<\/a>,\u00a0Prithviraj\u00a0Ammanabrolu,\u00a0Marc-Alexandre\u00a0C\u00f4t\u00e9<\/a>,\u00a0Xingdi\u00a0Yuan<\/a>\r\n\r\nML9804:\u00a0Differential Equation Units: Learning Functional Forms of Activation Functions from Data<\/strong>\r\nMohamadali\u00a0Torkamani,\u00a0Shiv Shankar,\u00a0Pedram\u00a0Rooshenas,\u00a0Philip Wallis<\/b>\r\n\r\nNLP4794:\u00a0Bridging the Gap between Pre-Training and Fine-Tuning for End-to-End Speech Translation<\/strong>\r\nChengyi\u00a0Wang,\u00a0Yu Wu<\/a>,\u00a0Shujie\u00a0Liu<\/a>,\u00a0Zhenglu\u00a0Yang,\u00a0Ming Zhou<\/a>\r\n\r\nNLP6828:\u00a0Complementary Auxiliary Classifiers for Label-Conditional Text Generation<\/strong>\r\nYuan Li,\u00a0Chunyuan\u00a0Li<\/a>,\u00a0Yizhe\u00a0Zhang<\/a>,\u00a0Xiujun\u00a0Li<\/a>,\u00a0Guoqing\u00a0Zheng<\/a>,\u00a0Lawrence Carin Duke,\u00a0Jianfeng\u00a0Gao<\/a>\r\n\r\nNLP7682:\u00a0Cross-Lingual Natural Language Generation via Pre-Training<\/strong>\r\nZewen\u00a0Chi,\u00a0Li Dong<\/a>,\u00a0Furu\u00a0Wei<\/a>,\u00a0Wenhui\u00a0Wang<\/a>,\u00a0Xian-Ling Mao,\u00a0Heyan\u00a0Huang\r\n\r\nRU3579:\u00a0Reliable and Efficient Anytime Skeleton Learning<\/strong>\r\nRui Ding<\/strong>,\u00a0Yanzhi\u00a0Liu,\u00a0Jingjing\u00a0Tian,\u00a0Zhouyu\u00a0Fu,\u00a0Shi Han<\/a>,\u00a0Dongmei\u00a0Zhang<\/a>\r\n\r\nVIS4133:\u00a0Unicoder-VL: A Universal Encoder for Vision and Language by Cross-Modal Pre-Training<\/strong>\r\nGen Li,\u00a0Nan\u00a0Duan<\/a>,\u00a0Yuejian\u00a0Fang,\u00a0Ming Gong<\/a>,\u00a0Daxin Jiang<\/a>\r\n
Tuesday, February 11<\/h2>\r\n
9:30 AM\u201310:45 AM<\/h3>\r\nTech Session 4: ML: RL and Multiagent RL | Regent\r\nPoster 6906: Metareasoning in Modular Software Systems: On-the-Fly Configuration Using Reinforcement Learning with Rich Contextual Representations<\/strong>\r\nAditya Modi, Debadeepta Dey<\/a>, Alekh Agarwal<\/a>, Adith Swaminathan<\/a>, Besmira Nushi<\/a>, Sean Andrist<\/a>, Eric Horvitz<\/a>\r\n\r\nTech Session 4: ML: RL and Multiagent RL | Regent\r\nPoster 9280: Actor Critic Deep Reinforcement Learning for Neural Malware Control<\/strong>\r\nYu Wang<\/strong>, Jack Stokes<\/strong>, Mady Marinescu<\/strong>\r\n\r\nTech Session 5: Vision: Image Retrieval, Ranking, Recognition | Gramercy\r\nPoster 7144: Functionality Discovery and Prediction of Physical Objects<\/strong>\r\nLei Ji<\/a>, Botian Shi, Xianglin Guo, Xilin Chen\r\n
11:15 AM\u201312:30 PM<\/h3>\r\nTech Session 3: NLP: Representation Learning | Sutton South\r\nOral 3656: P-SIF: Document Embeddings Using Partition Averaging<\/strong>\r\nVivek Gupta, Ankit Saw, Pegah Nokhiz, Praneeth Netrapalli<\/a>, Piyush Rai, Partha Talukdar\r\n\r\nTech Session 3: NLP: Representation Learning | Sutton South\r\nOral 5766: TextNAS: A Neural Architecture Search Space Tailored for Text Representation<\/strong>\r\nYujing Wang, Yaming Yang, Yiren Chen, Jing Bai<\/a>, Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai Tong, Mao Yang<\/a>, Lidong Zhou<\/a>\r\n\r\nTech Session 3: NLP: Representation Learning | Sutton South\r\nPoster 7202: Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding<\/strong>\r\nOren Barkan, Noam Razin<\/a>, Itzik Malkiel<\/a>, Ori Katz<\/strong>, Avi Caciularu<\/a>, Noam Koenigstein<\/a>\r\n\r\nTech Session 4: ML: Neural Nets Theory, Models and Algorithms | Regent\r\nPoster 1536: Posterior-Guided Neural Architecture Search<\/strong>\r\nYizhou Zhou, Xiaoyan Sun<\/a>, Chong Luo<\/a>, Zheng-Jun Zha, Wenjun Zeng<\/a>\r\n\r\nTech Session 12: Mechanism Design and Fair Allocation | Morgan\r\nOral 4617: Online Second Price Auction with Semi-bandit Feedback Under the Non-Stationary Setting<\/strong>\r\nHaoyu Zhao, Wei Chen\r\n
2:00 PM\u20133:30 PM<\/h3>\r\nTech Session 2: NLP: Representation Learning, Summarization | Sutton North\r\nPoster 9252: Latent Relation Language Models<\/strong>\r\nHiroaki Hayashi, Zecong Hu, Chenyan Xiong<\/a>, Graham Neubig\r\n\r\nTech Session 3: NLP: Semantics and Summarization | Sutton South\r\nOral 3184: Graph-based Transformer with Cross-Candidate Verification for Semantic Parsing<\/strong>\r\nBo Shao, Yeyun Gong<\/strong>, Weizhen Qi, Guihong Cao<\/a>, Jianshu Ji<\/a>, Xiaola Lin\r\n\r\nTech Session 5: Vision: Human: Pose and Motion Analysis, Detection, Modeling | Gramercy\r\nPoster 2669: Semantics-Aligned Representation Learning for Person Re-identification<\/strong>\r\nXin Jin, Cuiling Lan<\/a>, Wenjun Zeng<\/a>, Guoqiang Wei, Zhibo Chen\r\n\r\nTech Session 5: Vision: Human: Pose and Motion Analysis, Detection, Modeling | Gramercy\r\nPoster 8881: Crowd Counting with Decomposed Uncertainty<\/strong>\r\nMin-hwan Oh, Peder Olsen<\/a>, Karthikeyan Natesan Ramamurthy\r\n\r\nTech Session 7: Vision: Vision + Language | Nassau\r\nPoster 1374: Learning 2D Temporal Adjacent Networks for Moment Localization with Natural Language<\/strong>\r\nSongyang Zhang, Houwen Peng<\/a>, Jianlong Fu<\/a>, Jiebo Luo\r\n\r\nTech Session 7: Vision: Vision + Language | Nassau\r\nPoster 2236: DualVD: An Adaptive Dual Encoding Model for Deep Visual Understanding in Visual Dialogue<\/strong>\r\nXiaoze Jiang, Jing Yu, Yingying Zhuang, Zengchang Qin, Yue Hu, Qi Wu, Xingxing Zhang<\/a>\r\n\r\nTech Session 7: Vision: Vision + Language | Nassau\r\nPoster 3499: What Makes A Good Story? Designing Composite Rewards for Visual Storytelling<\/strong>\r\nJunjie Hu, Yu Cheng<\/a>, Zhe Gan<\/a>, Jingjing Liu<\/a>, Jianfeng Gao<\/a>, Graham Neubig,\r\n\r\nTech Session 13: Mechanism Design | Bryant\r\nOral 1796: Preventing Arbitrage from Collusion When Eliciting Probabilities<\/strong>\r\nRupert Freeman<\/a>, David Pennock, Dominik Peters, Bo Waggoner\r\n
Wednesday, February 12<\/h2>\r\n
11:30 AM\u201312:30 PM<\/h3>\r\nTech Session 1: NLP: Language Models | Trianon\r\nOral 4504: Alternating Language Modeling for Cross-Lingual Pre-Training<\/strong>\r\nJian Yang,\u00a0Shuming\u00a0Ma<\/a>,\u00a0Dongdong\u00a0Zhang<\/a>,\u00a0ShuangZhi\u00a0Wu,\u00a0Zhoujun\u00a0Li,\u00a0Ming Zhou<\/a>\r\n\r\nTech Session 4: NLP: Semantics and Summarization | Sutton South\r\nOral 7131: Multi-level Head-wise Match and Aggregation in Transformer for Textual Sequence Matching<\/strong>\r\nShuohang\u00a0Wang<\/a>,\u00a0Yunshi\u00a0Lan,\u00a0Yi Tay,\u00a0Jing Jiang,\u00a0Jingjing\u00a0Liu<\/a>\r\n
2:00 PM\u20133:20 PM<\/h3>\r\nTech Session 1: NLP: Machine Translation, Entity Recognition and Linking | Trianon\r\nOral 2729: Fine-Tuning by Curriculum Learning for Non-Autoregressive Neural Machine Translation<\/strong>\r\nJunliang Guo, Xu Tan<\/a>, Linli Xu, Tao Qin<\/a>, Tieyan Liu, Enhong Chen\r\n\r\nTech Session 1: NLP: Machine Translation, Entity Recognition and Linking | Trianon\r\nOral 3465: Transductive Ensemble Learning for Neural Machine Translation<\/strong>\r\nYiren Wang, Lijun Wu, Yingce Xia<\/a>, Tao Qin<\/a>, Cheng Xiang Zhai, Tieyan Liu\r\n
6:30 PM\u20138:30 PM | Poster Session<\/h3>\r\nAIW7144:\u00a0Functionality Discovery and Prediction of Physical Objects<\/strong>\r\nLei Ji<\/a>,\u00a0Botian\u00a0Shi,\u00a0Xianglin\u00a0Guo,\u00a0Xilin\u00a0Chen\r\n\r\nAPP9280:\u00a0Actor Critic Deep Reinforcement Learning for Neural Malware Control<\/strong>\r\nYu Wang<\/b>,<\/b>\u00a0Jack Stokes<\/b>,<\/b>\u00a0Mady<\/b>\u00a0Marinescu<\/b>\r\n\r\nGTEP1796:\u00a0Preventing Arbitrage\u00a0from Collusion When Eliciting Probabilities<\/strong>\r\nRupert Freeman<\/a>,\u00a0David Pennock,\u00a0Dominik Peters,\u00a0Bo Waggoner\r\n\r\nML1536:\u00a0Posterior-Guided Neural Architecture Search<\/strong>\r\nYizhou\u00a0Zhou,\u00a0Xiaoyan\u00a0Sun<\/a>,\u00a0Chong Luo<\/a>,\u00a0Zheng-Jun\u00a0Zha,\u00a0Wenjun Zeng<\/a>\r\n\r\nML2669:\u00a0Semantics-Aligned Representation Learning for Person Re-identification<\/strong>\r\nXin\u00a0Jin,\u00a0Cuiling\u00a0Lan<\/a>,\u00a0Wenjun Zeng<\/a>,\u00a0Guoqiang\u00a0Wei,\u00a0Zhibo\u00a0Chen\r\n\r\nML3465:\u00a0Transductive\u00a0Ensemble Learning for Neural Machine Translation<\/strong>\r\nYiren\u00a0Wang,\u00a0Lijun Wu,\u00a0Yingce\u00a0Xia<\/a>,\u00a0Tao Qin<\/a>,\u00a0Cheng Xiang\u00a0Zhai,\u00a0Tieyan\u00a0Liu\r\n\r\nML4617:\u00a0Online Second Price Auction with Semi-bandit Feedback Under the Non-Stationary Setting<\/strong>\r\nHaoyu\u00a0Zhao,\u00a0Wei Chen<\/a>\r\n\r\nML6906:\u00a0Metareasoning\u00a0in Modular Software Systems: On-the-Fly Configuration Using Reinforcement Learning with Rich Contextual Representations<\/strong>\r\nAditya Modi,\u00a0Debadeepta\u00a0Dey<\/a>,\u00a0Alekh\u00a0Agarwal<\/a>,\u00a0Adith\u00a0Swaminathan<\/a>,\u00a0Besmira Nushi<\/a>,\u00a0Sean Andrist<\/a>,\u00a0Eric Horvitz<\/a>\r\n\r\nNLP2729:\u00a0Fine-Tuning by Curriculum Learning for Non-Autoregressive Neural Machine Translation<\/strong>\r\nJunliang\u00a0Guo,\u00a0Xu Tan<\/a>,\u00a0Linli\u00a0Xu,\u00a0Tao Qin<\/a>,\u00a0Tieyan\u00a0Liu,\u00a0Enhong\u00a0Chen\r\n\r\nNLP3184:\u00a0Graph-based Transformer with Cross-Candidate Verification for Semantic Parsing<\/strong>\r\nBo Shao,\u00a0Yeyun<\/b>\u00a0Gong<\/b>,\u00a0Weizhen\u00a0Qi,\u00a0Guihong\u00a0Cao<\/a>,\u00a0Jianshu\u00a0Ji<\/a>,\u00a0Xiaola\u00a0Lin\r\n\r\nNLP3656:\u00a0P-SIF: Document Embeddings Using Partition Averaging<\/strong>\r\nVivek Gupta,\u00a0Ankit Saw,\u00a0Pegah\u00a0Nokhiz,\u00a0Praneeth\u00a0Netrapalli<\/a>,\u00a0Piyush Rai,\u00a0Partha\u00a0Talukdar\r\n\r\nNLP5766:\u00a0TextNAS: A Neural Architecture Search Space\u00a0Tailored for Text Representation<\/strong>\r\nYujing\u00a0Wang,\u00a0Yaming\u00a0Yang,\u00a0Yiren\u00a0Chen,\u00a0Jing Bai<\/a>,\u00a0Ce Zhang,\u00a0Guinan\u00a0Su,\u00a0Xiaoyu\u00a0Kou,\u00a0Yunhai\u00a0Tong,\u00a0Mao Yang<\/a>,\u00a0Lidong\u00a0Zhou<\/a>\r\n\r\nNLP7202:\u00a0Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding<\/strong>\r\nOren\u00a0Barkan,\u00a0Noam\u00a0Razin<\/a>,\u00a0Itzik\u00a0Malkiel<\/a>,\u00a0Ori Katz<\/strong>,\u00a0Avi\u00a0Caciularu<\/a>,\u00a0Noam\u00a0Koenigstein<\/a>\r\n\r\nNLP9252:\u00a0Latent Relation Language Models<\/strong>\r\nHiroaki Hayashi,\u00a0Zecong\u00a0Hu,\u00a0