{"id":170935,"date":"2012-04-02T08:16:07","date_gmt":"2012-04-02T08:16:07","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/project\/infer-net-fun\/"},"modified":"2017-06-16T09:44:24","modified_gmt":"2017-06-16T16:44:24","slug":"infer-net-fun","status":"publish","type":"msr-project","link":"https:\/\/www.microsoft.com\/en-us\/research\/project\/infer-net-fun\/","title":{"rendered":"Infer.NET Fun"},"content":{"rendered":"
“I think it’s extraordinarily important that we in computer science keep fun in computing.”<\/p>\n
Alan J. Perlis – ACM Turing Award Winner 1966.<\/p>\n
Infer.NET Fun turns the simple succinct syntax of F# into an executable modeling language for Bayesian machine learning.<\/p>\n
We propose a marriage of probabilistic functional programming with Bayesian reasoning. Infer.NET Fun turns F# into a probabilistic\u00a0modeling language \u2013 you can code up the conditional probability distributions of Bayes\u2019 rule using F# array comprehensions with constraints. Write your model in F#. Run it directly to synthesize test datasets and to debug models. Or compile it with Infer.NET for efficient statistical inference. Hence, efficient algorithms for a range of regression, classification, and specialist learning tasks derive by probabilistic functional programming.<\/p>\n
Tabular brings the power of Infer.NET Fun to spreadsheet users, via a domain-specific languages for probabilistic models designed to be authored within the spreadsheet, taking machine learning to where the data is.<\/p>\n
Some current participants in the Infer.NET Fun project:<\/p>\n
Since\u00a0September 2012, Infer.NET Fun is a component of Infer.NET.<\/p>\n","protected":false},"excerpt":{"rendered":"
“I think it’s extraordinarily important that we in computer science keep fun in computing.” Alan J. Perlis – ACM Turing Award Winner 1966. Infer.NET Fun turns the simple succinct syntax of F# into an executable modeling language for Bayesian machine learning. We propose a marriage of probabilistic functional programming with Bayesian reasoning. Infer.NET Fun turns […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"research-area":[13556,13560],"msr-locale":[268875],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-170935","msr-project","type-msr-project","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-programming-languages-software-engineering","msr-locale-en_us","msr-archive-status-active"],"msr_project_start":"2012-04-02","related-publications":[159909,163680,165848,167607],"related-downloads":[],"related-videos":[],"related-groups":[],"related-events":[],"related-opportunities":[],"related-posts":[235453],"related-articles":[],"tab-content":[],"slides":[],"related-researchers":[{"type":"user_nicename","value":"adityan","display_name":"Aditya Nori","author_link":"Aditya Nori<\/a>","is_active":false,"user_id":30829,"last_first":"Nori, Aditya","people_section":0,"alias":"adityan"},{"type":"user_nicename","value":"sriram","display_name":"Sriram Rajamani","author_link":"Sriram Rajamani<\/a>","is_active":false,"user_id":33711,"last_first":"Rajamani, Sriram","people_section":0,"alias":"sriram"}],"msr_research_lab":[199562],"msr_impact_theme":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170935","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-project"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170935\/revisions"}],"predecessor-version":[{"id":236771,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170935\/revisions\/236771"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=170935"}],"wp:term":[{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=170935"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=170935"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=170935"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=170935"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}