{"id":591091,"date":"2019-06-04T09:45:04","date_gmt":"2019-06-04T16:45:04","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-project&p=591091"},"modified":"2022-10-24T15:17:11","modified_gmt":"2022-10-24T22:17:11","slug":"decentralized-collaborative-ai-on-blockchain","status":"publish","type":"msr-project","link":"https:\/\/www.microsoft.com\/en-us\/research\/project\/decentralized-collaborative-ai-on-blockchain\/","title":{"rendered":"Sharing Updatable Models (SUM) on Blockchain"},"content":{"rendered":"
Sharing Updatable Models (SUM) on Blockchain <\/strong>is a\u00a0framework for sharing and training decentralized machine learning models. Using the model to get predictions for data is free<\/strong> because the model is public. We are facilitating crowdsourcing on the blockchain<\/strong>; allowing people to easily and transparently<\/strong> improve the models they use in everyday products. A blockchain ensures the persistence<\/strong> of models giving customers trust<\/strong> in the services they use.<\/p>\n (opens in new tab)<\/span><\/a><\/p>\n Our goal is to encourage decentralized<\/strong> hosting and versioning of public machine learning models to democratize AI<\/strong> using blockchain technology. A one-time deployment fee of usually a few dollars is paid to the blockchain network versus the typical ongoing subscription fees that must be paid to a cloud service provider to continuously host a model. Anyone can pay a transaction fee of a few cents if they want to improve the model stored in a smart contract using some training data, in contrast to most services charging dollars per month for access. A deposit of a variable amount is also sent with training data. If the data is determined to be good, they should get a full refund for their deposit and might even earn rewards from either a sponsor or from people that added bad data. In the same spirit as Data Dignity<\/strong> initiatives, this gives customers direct reimbursement for their contributions to models. There are many ways to encourage contributors to submit good quality data. We\u2019ve analyzed several examples including gamification (non-financial, points + badges like Stackoverflow), mechanisms based on established theory in Prediction Markets, and a Self-Assessment mechanism that requires no oversight.<\/p>\n <\/p>\n The vision<\/strong> of this project is for companies to one day share underlying models just like how they share open source software and model architectures now. Public models can be used in products to earn customer trust through transparency in the training of the model, the use of the model’s predictions, and the model’s persistence.<\/p>\n Contributing data can be broken down into 3 steps:<\/p>\n <\/p>\n <\/p>\n Check out our code<\/strong> with Python simulations and Solidity (Ethereum) demos at github.com\/microsoft\/0xDeCA10B (opens in new tab)<\/span><\/a>.<\/p>\n The basics of the framework can be found in our\u00a0blog post (opens in new tab)<\/span><\/a>. A demo of the self-assessment incentive mechanism can be found here (opens in new tab)<\/span><\/a>.<\/p>\n Even more details can be found in the initial paper (opens in new tab)<\/span><\/a>\u00a0describing the framework, accepted to Blockchain-2019, The IEEE International Conference on Blockchain.<\/p>\n An analysis of several machine learning models with the self-assessment incentive mechanism can be found in our second paper (opens in new tab)<\/span><\/a> which was accepted to\u00a0The 2020 International Conference on Blockchain (opens in new tab)<\/span><\/a>.<\/p>\n","protected":false},"excerpt":{"rendered":" A framework to host and train publicly available machine learning models while crowdsourcing a dataset. Ideally, using a model for prediction is free. An incentive mechanism validates added data.<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"research-area":[13556,13563,13548,13554],"msr-locale":[268875],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-591091","msr-project","type-msr-project","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-research-area-economics","msr-research-area-human-computer-interaction","msr-locale-en_us","msr-archive-status-active"],"msr_project_start":"","related-publications":[598375,892080],"related-downloads":[],"related-videos":[],"related-groups":[],"related-events":[],"related-opportunities":[],"related-posts":[],"related-articles":[],"tab-content":[],"slides":[],"related-researchers":[{"type":"user_nicename","display_name":"Justin D. Harris","user_id":37062,"people_section":"Section name 1","alias":"juharri"}],"msr_research_lab":[437514],"msr_impact_theme":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/591091"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-project"}],"version-history":[{"count":24,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/591091\/revisions"}],"predecessor-version":[{"id":892077,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/591091\/revisions\/892077"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=591091"}],"wp:term":[{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=591091"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=591091"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=591091"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=591091"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}Architecture Overview<\/h2>\n
\n
Learn More<\/h2>\n
Papers<\/h3>\n