{"id":788966,"date":"2021-10-27T00:04:06","date_gmt":"2021-10-27T07:04:06","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-project&p=788966"},"modified":"2021-11-25T19:02:12","modified_gmt":"2021-11-26T03:02:12","slug":"robust-machine-learning","status":"publish","type":"msr-project","link":"https:\/\/www.microsoft.com\/en-us\/research\/project\/robust-machine-learning\/","title":{"rendered":"Robust Machine Learning"},"content":{"rendered":"
\n\t
\n\t\t
\n\t\t\t\t\t<\/div>\n\t\t\n\t\t
\n\t\t\t\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n

Robust Machine Learning<\/h1>\n\n\n\n

<\/p>\n\n\t\t\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t<\/div>\n\t\t<\/div>\n\t<\/div>\n<\/section>\n\n\n\n\n\n

We focus on understanding the weak points of machine learning and developing robust algorithms from principles including but not limited to 1) adversarial robustness 2) exploiting the causal relations.<\/p>\n\n\n\n\n\n