{"id":852753,"date":"2022-06-16T06:06:19","date_gmt":"2022-06-16T13:06:19","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-project&p=852753"},"modified":"2022-06-16T08:22:13","modified_gmt":"2022-06-16T15:22:13","slug":"offlinerlalgo","status":"publish","type":"msr-project","link":"https:\/\/www.microsoft.com\/en-us\/research\/project\/offlinerlalgo\/","title":{"rendered":"Offline Reinforcement Learning Algorithms"},"content":{"rendered":"
\n\t
\n\t\t
\n\t\t\t\t\t<\/div>\n\t\t\n\t\t
\n\t\t\t\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n

Offline Reinforcement Learning Algorithms<\/h1>\n\n\n\n

In this page, we describe the algorithmic landscape of Offline RL and enumerate some algorithmic development efforts made by MSR in this space<\/p>\n\n\t\t\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t<\/div>\n\t\t<\/div>\n\t<\/div>\n<\/section>\n\n\n\n\n\n

In a tutorial lecture (opens in new tab)<\/span><\/a> on Offline RL (opens in new tab)<\/span><\/a>, we analyze its algorithmic landscape and come up with a classification in five categories:<\/p>\n\n\n\n