{"id":931371,"date":"2023-03-28T13:43:57","date_gmt":"2023-03-28T20:43:57","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-project&p=931371"},"modified":"2024-01-25T08:23:15","modified_gmt":"2024-01-25T16:23:15","slug":"lida-automatic-generation-of-grammar-agnostic-visualizations","status":"publish","type":"msr-project","link":"https:\/\/www.microsoft.com\/en-us\/research\/project\/lida-automatic-generation-of-grammar-agnostic-visualizations\/","title":{"rendered":"LIDA: Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language Models"},"content":{"rendered":"
\n\t
\n\t\t
\n\t\t\t\t\t<\/div>\n\t\t\n\t\t
\n\t\t\t\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n

LIDA<\/h2>\n\n\n\n

Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language Models<\/p>\n\n\t\t\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t<\/div>\n\t\t<\/div>\n\t<\/div>\n<\/section>\n\n\n\n\n\n

Systems that support users in the automatic creation of visualizations must address several subtasks – understand the semantics of data, enumerate relevant visualization goals and generate visualization specifications. In this work, we\u00a0pose visualization generation as a multi-stage generation problem\u00a0and argue that well-orchestrated pipelines based on large language models (LLMs) and image generation models (IGMs) are suitable to addressing these tasks. We present LIDA, a novel tool for generating grammar-agnostic visualizations and infographics. LIDA comprises of 4 modules – A SUMMARIZER that converts data into a rich but compact natural language summary, a GOAL EXPLORER that enumerates visualization goals given the data, a VISGENERATOR that generates, refines, executes and filters visualization code and an INFOGRAPHER module that yields data-faithful stylized graphics using IGMs. LIDA provides a python api, and a hybrid user interface (direct manipulation and\u00a0multilingual\u00a0natural language) for interactive chart, infographics and data story generation.<\/p>\n\n\n\n

\n
Learn more<\/a><\/div>\n<\/div>\n\n\n","protected":false},"excerpt":{"rendered":"

Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language Models Systems that support users in the automatic creation of visualizations must address several subtasks – understand the semantics of data, enumerate relevant visualization goals and generate visualization specifications. In this work, we\u00a0pose visualization generation as a multi-stage generation problem\u00a0and argue that well-orchestrated pipelines based […]<\/p>\n","protected":false},"featured_media":931380,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"research-area":[13556],"msr-locale":[268875],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-931371","msr-project","type-msr-project","status-publish","has-post-thumbnail","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-archive-status-active"],"msr_project_start":"2022-10-01","related-publications":[932820],"related-downloads":[966237],"related-videos":[],"related-groups":[],"related-events":[],"related-opportunities":[],"related-posts":[],"related-articles":[],"tab-content":[],"slides":[],"related-researchers":[{"type":"user_nicename","display_name":"Victor Dibia","user_id":41311,"people_section":"Related people","alias":"victordibia"}],"msr_research_lab":[199565,992148],"msr_impact_theme":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/931371"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-project"}],"version-history":[{"count":8,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/931371\/revisions"}],"predecessor-version":[{"id":1001904,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/931371\/revisions\/1001904"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media\/931380"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=931371"}],"wp:term":[{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=931371"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=931371"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=931371"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=931371"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}