{"id":1010349,"date":"2024-02-28T07:14:43","date_gmt":"2024-02-28T15:14:43","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1010349"},"modified":"2024-02-28T07:17:38","modified_gmt":"2024-02-28T15:17:38","slug":"overview-of-the-trec-2023-tip-of-the-tongue-track","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/overview-of-the-trec-2023-tip-of-the-tongue-track\/","title":{"rendered":"Overview of the TREC 2023 Tip-of-the-Tongue Track"},"content":{"rendered":"

Tip-of-the-tongue (ToT) known-item retrieval involves supporting searchers interested in refinding a previously encountered item for which they are unable to reliably recall an identifier. ToT requests tend to be verbose and include several complex phenomena, making them especially difficult for existing information retrieval systems. The TREC 2023 ToT track focused on a single ad-hoc retrieval task in the movie domain. Requests were sampled from an existing ToT dataset and the document corpus consisted of a subset of Wikipedia pages associated with the “audiovisual works” category. This year 11 groups submitted a total of 33 runs. Consistent with earlier findings, there is a negative correlation between query length and retrieval performance. We found that successful teams were able to leverage large external datasets to substantially improve performance. While a closed large language model managed to beat 26 participant runs, it did so with much lower recall.<\/p>\n","protected":false},"excerpt":{"rendered":"

Tip-of-the-tongue (ToT) known-item retrieval involves supporting searchers interested in refinding a previously encountered item for which they are unable to reliably recall an identifier. ToT requests tend to be verbose and include several complex phenomena, making them especially difficult for existing information retrieval systems. The TREC 2023 ToT track focused on a single ad-hoc retrieval […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[251857,248503,268365,256306,254605,249592,268362],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1010349","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us","msr-field-of-study-benchmarking","msr-field-of-study-information-retrieval","msr-field-of-study-known-item-retrieval","msr-field-of-study-ranking-information-retrieval","msr-field-of-study-search-algorithm","msr-field-of-study-search-engine","msr-field-of-study-tip-of-the-tongue"],"msr_publishername":"TREC","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-2-28","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"NIST","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/trec.nist.gov\/pubs\/trec32\/papers\/Overview_tot.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Jaime Arguello","user_id":0,"rest_url":false},{"type":"text","value":"Samarth Bhargav","user_id":0,"rest_url":false},{"type":"text","value":"Fernando Diaz","user_id":0,"rest_url":false},{"type":"text","value":"Evangelos Kanoulas","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Bhaskar Mitra","user_id":31257,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Bhaskar Mitra"}],"msr_impact_theme":[],"msr_research_lab":[199561,437514],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[1028046],"video":[],"download":[1028046],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1010349"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1010349\/revisions"}],"predecessor-version":[{"id":1010352,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1010349\/revisions\/1010352"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1010349"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1010349"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1010349"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1010349"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1010349"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1010349"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1010349"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1010349"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1010349"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1010349"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1010349"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1010349"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1010349"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1010349"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1010349"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1010349"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}