{"id":1020663,"date":"2024-04-01T14:48:32","date_gmt":"2024-04-01T21:48:32","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1020663"},"modified":"2024-04-01T14:48:32","modified_gmt":"2024-04-01T21:48:32","slug":"supermodular-approximation-of-norms-and-applications","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/supermodular-approximation-of-norms-and-applications\/","title":{"rendered":"Supermodular Approximation of Norms and Applications"},"content":{"rendered":"

Many classical problems in theoretical computer science involve norm, even if implicitly; for
\nexample, both XOS functions and downward-closed sets are equivalent to some norms. The last
\ndecade has seen a lot of interest in designing algorithms beyond the standard \u2113p norms.
\nDespite notable advancements, many existing methods remain tailored to specific problems,
\nleaving a broader applicability to general norms less understood. This paper investigates the
\nintrinsic properties of \u2113p norms that facilitate their widespread use and seeks to abstract these
\nqualities to a more general setting.
\nWe identify supermodularity\u2014often reserved for combinatorial set functions and characterized by monotone gradients\u2014as a defining feature beneficial for the \u2113p norm. We introduce the notion
\nof p-supermodularity for norms, asserting that a norm is p-supermodular if its pth power function exhibits supermodularity. The association of supermodularity with norms offers a new lens
\nthrough which to view and construct algorithms.
\nOur work demonstrates that for a large class of problems p-supermodularity is a sufficient
\ncriterion for developing good algorithms. This is either by reframing existing algorithms for
\nproblems like Online Load-Balancing and Bandits with Knapsacks through a supermodular
\nlens, or by introducing novel analyses for problems such as Online Covering, Online Packing,
\nand Stochastic Probing. Moreover, we prove that every symmetric norm can be approximated by
\na p-supermodular norm. Together, these recover and extend several results from the literature,
\nand support p-supermodularity as a unified theoretical framework for optimization challenges
\ncentered around norm-related problems<\/p>\n","protected":false},"excerpt":{"rendered":"

Many classical problems in theoretical computer science involve norm, even if implicitly; for example, both XOS functions and downward-closed sets are equivalent to some norms. The last decade has seen a lot of interest in designing algorithms beyond the standard \u2113p norms. Despite notable advancements, many existing methods remain tailored to specific problems, leaving a […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691],"msr-conference":[260098],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1020663","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us","msr-field-of-study-computer-science"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-4","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/04\/Orlicz_Norms-2.pdf","id":"1020675","title":"orlicz_norms-2","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":1020675,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/04\/Orlicz_Norms-2.pdf"}],"msr-author-ordering":[{"type":"text","value":"Thomas Kesselheim","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Marco Molinaro","user_id":42204,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Marco Molinaro"},{"type":"text","value":"Sahil Singla","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[569136],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1020663"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1020663\/revisions"}],"predecessor-version":[{"id":1020678,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1020663\/revisions\/1020678"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1020663"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1020663"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1020663"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1020663"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1020663"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1020663"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1020663"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1020663"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1020663"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1020663"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1020663"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1020663"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1020663"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1020663"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1020663"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1020663"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}