{"id":1026357,"date":"2024-04-18T11:20:17","date_gmt":"2024-04-18T18:20:17","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1026357"},"modified":"2024-06-07T08:38:14","modified_gmt":"2024-06-07T15:38:14","slug":"table-gpt-table-fine-tuned-gpt-for-diverse-table-tasks","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/table-gpt-table-fine-tuned-gpt-for-diverse-table-tasks\/","title":{"rendered":"Table-GPT: Table Fine-tuned GPT for Diverse Table Tasks"},"content":{"rendered":"
Language models, such as GPT-3 and ChatGPT, demonstrate remarkable abilities to follow diverse human instructions and perform a wide range of tasks, using instruction fine-tuning. However, when probing language models using a range of basic table-understanding tasks, we observe that today’s language models are still sub-optimal in many table-related tasks, likely because they are pre-trained predominantly on one-dimensional natural-language texts, whereas relational tables are two-dimensional objects.<\/p>\n
<\/p>\n
In this work, we propose a new “table fine-tuning” paradigm, where we continue to train\/fine-tune language models like GPT-3.5 and ChatGPT, using diverse table-tasks synthesized from real tables as training data, which is analogous to “instruction fine-tuning”, but with the goal of enhancing language models’ ability to understand tables and perform table tasks. We show that our resulting Table-GPT models demonstrate (1) better table-understanding capabilities, by consistently outperforming the vanilla GPT-3.5 and ChatGPT, on a wide range of table tasks, including holdout unseen tasks, and (2) strong generalizability, in its ability to respond to diverse human instructions to perform new table-tasks, in a manner similar to GPT-3.5 and ChatGPT.<\/p>\n","protected":false},"excerpt":{"rendered":"
Language models, such as GPT-3 and ChatGPT, demonstrate remarkable abilities to follow diverse human instructions and perform a wide range of tasks, using instruction fine-tuning. However, when probing language models using a range of basic table-understanding tasks, we observe that today’s language models are still sub-optimal in many table-related tasks, likely because they are pre-trained […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1026357","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-6-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/04\/Table-GPT.pdf","id":"1044417","title":"table-gpt","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":1044417,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/06\/Table-GPT.pdf"},{"id":1044414,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/06\/Table-GPT-SIGMOD24.pdf"},{"id":1026360,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/04\/Table-GPT-SIGMOD24.pdf"}],"msr-author-ordering":[{"type":"text","value":"Peng Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yeye He","user_id":34992,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yeye He"},{"type":"text","value":"Dror Yashar","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Weiwei Cui","user_id":34808,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Weiwei Cui"},{"type":"user_nicename","value":"Song Ge","user_id":33692,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Song Ge"},{"type":"user_nicename","value":"Haidong Zhang","user_id":31953,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Haidong Zhang"},{"type":"text","value":"Danielle Rifinski Fainman","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Dongmei Zhang","user_id":31665,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dongmei Zhang"},{"type":"user_nicename","value":"Surajit Chaudhuri","user_id":33764,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Surajit Chaudhuri"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1026357"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1026357\/revisions"}],"predecessor-version":[{"id":1026438,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1026357\/revisions\/1026438"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1026357"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1026357"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1026357"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1026357"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1026357"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1026357"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1026357"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1026357"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1026357"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1026357"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1026357"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1026357"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1026357"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1026357"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1026357"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1026357"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}