{"id":1033434,"date":"2024-05-13T08:40:01","date_gmt":"2024-05-13T15:40:01","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1033434"},"modified":"2024-05-20T07:30:24","modified_gmt":"2024-05-20T14:30:24","slug":"reduction","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/reduction\/","title":{"rendered":"Do Not Recommend? Reduction as a Form of Content Moderation"},"content":{"rendered":"
Public debate about content moderation has overwhelmingly focused on removal: social media platforms deleting content and suspending users, or opting not to do so. However, removal is not the only available remedy. Reducing the visibility of problematic content is becoming a commonplace element of platform governance. Platforms use machine learning classifiers to identify content they judge misleading enough, risky enough, or offensive enough that, while it does not warrant removal according to the site guidelines, warrants demoting them in algorithmic rankings and recommendations. In this essay, I document this shift and explain how reduction works. I then raise questions about what it means to use recommendation as a means of content moderation.<\/p>\n","protected":false},"excerpt":{"rendered":"
Public debate about content moderation has overwhelmingly focused on removal: social media platforms deleting content and suspending users, or opting not to do so. However, removal is not the only available remedy. Reducing the visibility of problematic content is becoming a commonplace element of platform governance. Platforms use machine learning classifiers to identify content they […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13559],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[268671],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1033434","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-social-sciences","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-6-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"8","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"3","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.1177\/20563051221117552","label_id":"243106","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/05\/Gillespie-2022-Do-Not-Recommend.pdf","id":"1033467","title":"gillespie-2022-do-not-recommend","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":1033467,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/05\/Gillespie-2022-Do-Not-Recommend.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Tarleton Gillespie","user_id":33877,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tarleton Gillespie"}],"msr_impact_theme":[],"msr_research_lab":[199563],"msr_event":[],"msr_group":[332906],"msr_project":[170498],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":170498,"post_title":"Social Media Collective","post_name":"social-media-collective","post_type":"msr-project","post_date":"2010-07-06 19:46:44","post_modified":"2023-04-14 15:38:19","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/social-media-collective\/","post_excerpt":"The mission of the SMC is first and foremost\u00a0to bring critical and analytical lenses to contemporary sociotechnical systems, particularly around media, expertise, labor, and publics. We aim to contribute to the academic fields concerned with the sociological dimensions of new media and new forms of work. We also aim to insist that these questions be part of the broader research agenda of MSR and the efforts of the company. But our mission is also in…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170498"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1033434"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1033434\/revisions"}],"predecessor-version":[{"id":1033476,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1033434\/revisions\/1033476"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1033434"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1033434"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1033434"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1033434"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1033434"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1033434"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1033434"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1033434"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1033434"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1033434"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1033434"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1033434"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1033434"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1033434"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1033434"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1033434"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}