{"id":1034508,"date":"2024-05-15T13:05:34","date_gmt":"2024-05-15T20:05:34","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1034508"},"modified":"2024-05-15T13:05:34","modified_gmt":"2024-05-15T20:05:34","slug":"osprey-pixel-understanding-with-visual-instruction-tuning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/osprey-pixel-understanding-with-visual-instruction-tuning\/","title":{"rendered":"Osprey: Pixel Understanding with Visual Instruction Tuning"},"content":{"rendered":"

Multimodal large language models (MLLMs) have recently achieved impressive general-purpose vision-language capabilities through visual instruction tuning. However, current MLLMs primarily focus on image-level or box-level understanding, falling short in achieving fine-grained vision-language alignment at pixel level. Besides, the lack of mask-based instruction data limits their advancements. In this paper, we propose Osprey, a mask-text instruction tuning approach, to extend MLLMs by incorporating fine-grained mask regions into language instruction, aiming at achieving pixel-wise visual understanding. To achieve this goal, we first meticulously curate a mask-based region-text dataset with 724K samples, and then design a vision-language model by injecting pixel-level representation into LLM. Specifically, Osprey adopts a convolutional CLIP backbone as the vision encoder and employs a mask-aware visual extractor to extract precise visual mask features from high resolution input. Experimental results demonstrate Osprey’s superiority in various region understanding tasks, showcasing its new capability for pixel-level instruction tuning. In particular, Osprey can be integrated with Segment Anything Model (SAM) seamlessly to obtain multi-granularity semantics. The source code, dataset and demo can be found at https:\/\/github.com\/CircleRadon\/Osprey.<\/p>\n","protected":false},"excerpt":{"rendered":"

Multimodal large language models (MLLMs) have recently achieved impressive general-purpose vision-language capabilities through visual instruction tuning. However, current MLLMs primarily focus on image-level or box-level understanding, falling short in achieving fine-grained vision-language alignment at pixel level. Besides, the lack of mask-based instruction data limits their advancements. In this paper, we propose Osprey, a mask-text instruction […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1034508","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-locale-en_us","msr-field-of-study-computer-science"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-12-14","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.48550\/arXiv.2312.10032","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.org\/rec\/journals\/corr\/abs-2312-10032.html","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2312.10032","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Yuqian Yuan","user_id":0,"rest_url":false},{"type":"text","value":"Wentong Li","user_id":0,"rest_url":false},{"type":"text","value":"Jian Liu","user_id":0,"rest_url":false},{"type":"text","value":"Dongqi Tang","user_id":0,"rest_url":false},{"type":"text","value":"Xinjie Luo","user_id":0,"rest_url":false},{"type":"text","value":"Chi Qin","user_id":0,"rest_url":false},{"type":"text","value":"Lei Zhang","user_id":0,"rest_url":false},{"type":"text","value":"Jianke Zhu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[1033725],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1034508"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1034508\/revisions"}],"predecessor-version":[{"id":1034511,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1034508\/revisions\/1034511"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1034508"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1034508"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1034508"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1034508"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1034508"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1034508"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1034508"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1034508"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1034508"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1034508"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1034508"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1034508"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1034508"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1034508"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1034508"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1034508"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}