{"id":1054431,"date":"2024-07-03T13:52:25","date_gmt":"2024-07-03T20:52:25","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1054431"},"modified":"2024-07-24T11:24:09","modified_gmt":"2024-07-24T18:24:09","slug":"agentinstruct-toward-generative-teaching-with-agentic-flows","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/agentinstruct-toward-generative-teaching-with-agentic-flows\/","title":{"rendered":"AgentInstruct: Toward Generative Teaching with Agentic Flows"},"content":{"rendered":"

Synthetic data is becoming increasingly important for accelerating the development of language models, both large and small. Despite several successful use cases, researchers also raised concerns around model collapse and drawbacks of imitating other models. This discrepancy can be attributed to the fact that synthetic data varies in quality and diversity. Effective use of synthetic data usually requires significant human effort in curating the data. We focus on using synthetic data for post-training, specifically creating data by powerful models to teach a new skill or behavior to another model, we refer to this setting as Generative Teaching. We introduce AgentInstruct, an extensible agentic framework for automatically creating large amounts of diverse and high-quality synthetic data. AgentInstruct can create both the prompts and responses, using only raw data sources like text documents and code files as seeds. We demonstrate the utility of AgentInstruct by creating a post training dataset of 25M pairs to teach language models different skills, such as text editing, creative writing, tool usage, coding, reading comprehension, etc. The dataset can be used for instruction tuning of any base model. We post-train Mistral-7b with the data. When comparing the resulting model Orca-3 to Mistral-7b-Instruct (which uses the same base model), we observe significant improvements across many benchmarks. For example, 40% improvement on AGIEval, 19% improvement on MMLU, 54% improvement on GSM8K, 38% improvement on BBH and 45% improvement on AlpacaEval. Additionally, it consistently outperforms other models such as LLAMA-8B-instruct and GPT-3.5-turbo.<\/p>\n","protected":false},"excerpt":{"rendered":"

Synthetic data is becoming increasingly important for accelerating the development of language models, both large and small. Despite several successful use cases, researchers also raised concerns around model collapse and drawbacks of imitating other models. This discrepancy can be attributed to the fact that synthetic data varies in quality and diversity. Effective use of synthetic […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193724],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246694,255439],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1054431","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-field-of-study-artificial-intelligence","msr-field-of-study-human-language-technologies"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-7-3","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"arXiv","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/07\/AgentInstruct.pdf","id":"1054434","title":"agentinstruct","label_id":"243132","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/2407.03502","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":1054434,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/07\/AgentInstruct.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Arindam Mitra","user_id":42978,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Arindam Mitra"},{"type":"user_nicename","value":"Luciano Del Corro","user_id":43002,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Luciano Del Corro"},{"type":"user_nicename","value":"Guoqing Zheng","user_id":37941,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Guoqing Zheng"},{"type":"user_nicename","value":"Shweti Mahajan","user_id":42594,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shweti Mahajan"},{"type":"user_nicename","value":"Dany Rouhana","user_id":31540,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dany Rouhana"},{"type":"user_nicename","value":"Andres Codas","user_id":42207,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Andres Codas"},{"type":"guest","value":"yadong-lu","user_id":973830,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yadong-lu"},{"type":"user_nicename","value":"Wei-ge Chen","user_id":34786,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wei-ge Chen"},{"type":"user_nicename","value":"Olga Vrousgou","user_id":37998,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Olga Vrousgou"},{"type":"user_nicename","value":"Corby Rosset","user_id":41997,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Corby Rosset"},{"type":"text","value":"Fillipe Silva","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Hamed Khanpour","user_id":38055,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Hamed Khanpour"},{"type":"user_nicename","value":"Yash Lara","user_id":43341,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yash Lara"},{"type":"user_nicename","value":"Ahmed Awadallah","user_id":31979,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ahmed Awadallah"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[392600],"msr_project":[1003089,983295],"publication":[],"video":[],"download":[],"msr_publication_type":"miscellaneous","related_content":{"projects":[{"ID":1003089,"post_title":"AI Frontiers: Explorations","post_name":"ai-frontiers-explorations","post_type":"msr-project","post_date":"2024-01-30 06:27:35","post_modified":"2024-01-30 07:06:17","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ai-frontiers-explorations\/","post_excerpt":"We are actively exploring a range of projects that we believe hold significant potential not only for Microsoft but also for the broader society. Games, Robotics, Self-driving OS Large Action & Behavioral Models (LAM) are AI foundational models that can predict how to act on human environments and interfaces, like LLM are capable to interpret human language and generate coherent text. We develop LAMs that will be capable to perform complex tasks in a multitude…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/1003089"}]}},{"ID":983295,"post_title":"Orca","post_name":"orca","post_type":"msr-project","post_date":"2023-11-20 18:02:56","post_modified":"2024-07-31 10:51:04","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/orca\/","post_excerpt":"Using AI, to improve AI Orca is a research team in Microsoft Research. Orca focuses on creating automated pipelines for creating high-quality synthetic data at scale, and training\u00a0models for specialization and model self-improvement. Orca\u2019s research areas involve self-improvement strategies, feedback-driven teaching methods between large and small models to create high-quality synthetic data and using domain specific data to specialize LMs. Orca focuses on the following directions: In Orca, we recently released AgentInstruct, an extensible agentic…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/983295"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1054431"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1054431\/revisions"}],"predecessor-version":[{"id":1060140,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1054431\/revisions\/1060140"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1054431"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1054431"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1054431"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1054431"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1054431"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1054431"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1054431"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1054431"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1054431"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1054431"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1054431"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1054431"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1054431"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1054431"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1054431"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1054431"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}