{"id":1065057,"date":"2024-08-02T16:30:12","date_gmt":"2024-08-02T23:30:12","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1065057"},"modified":"2024-08-02T16:30:12","modified_gmt":"2024-08-02T23:30:12","slug":"workload-estimator-using-eeg-and-eye-tracking","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/workload-estimator-using-eeg-and-eye-tracking\/","title":{"rendered":"Workload estimator using EEG and eye-tracking"},"content":{"rendered":"
In this paper we present a workload estimator based on biological signals – electroencephalographic and eye-tracking. The workload estimator is person- and session- independent, designed to work in a virtual reality flight simulator environment and is a part of our adaptive training system. The novel component is using objective evaluation of the workload, based on the flight logs, as labels for training the regression neural network. As evaluation parameter is selected the correlation with the objective labels. The paper contains the results from using several feature sets and estimators, where the best estimator achieves correlation with objective labels of 0.84.
\nIndex Terms\u2014workload estimation, electroencephalography, eye-tracking, adaptive training system<\/p>\n","protected":false},"excerpt":{"rendered":"
In this paper we present a workload estimator based on biological signals – electroencephalographic and eye-tracking. The workload estimator is person- and session- independent, designed to work in a virtual reality flight simulator environment and is a part of our adaptive training system. The novel component is using objective evaluation of the workload, based on […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1065057","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"IEEE","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-7-16","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"IEEE","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/08\/Workload_Estimator_final.pdf","id":"1065060","title":"workload_estimator_final","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":1065060,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/08\/Workload_Estimator_final.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Ivan Tashev","user_id":32127,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ivan Tashev"},{"type":"text","value":"Christine Beauchene","user_id":0,"rest_url":false},{"type":"text","value":"R. Michael Winters","user_id":0,"rest_url":false},{"type":"text","value":"Yu Te Wang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"David Johnston","user_id":31562,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=David Johnston"},{"type":"text","value":"Nathaniel Bridges","user_id":0,"rest_url":false},{"type":"text","value":"Justin R. Estepp","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[144923],"msr_project":[661380],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":661380,"post_title":"Brain-Computer Interfaces","post_name":"brain-computer-interfaces","post_type":"msr-project","post_date":"2020-05-21 13:38:22","post_modified":"2024-11-07 16:24:14","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/brain-computer-interfaces\/","post_excerpt":"The Brain-Computer Interfaces (BCI) project in Microsoft Research aims to enable BCI for the general population. This means non-intrusive methods, fewer number of electrodes and custom-designed signal picking devices. We go towards interactive BCI, which means response times within seconds and using EEG signals.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/661380"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1065057"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1065057\/revisions"}],"predecessor-version":[{"id":1065063,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1065057\/revisions\/1065063"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1065057"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1065057"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1065057"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1065057"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1065057"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1065057"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1065057"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1065057"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1065057"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1065057"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1065057"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1065057"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1065057"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1065057"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1065057"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1065057"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}