{"id":1076202,"date":"2024-08-15T14:38:35","date_gmt":"2024-08-15T21:38:35","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1076202"},"modified":"2024-08-15T14:41:27","modified_gmt":"2024-08-15T21:41:27","slug":"optimizing-data-pipelines-for-machine-learning-in-feature-stores","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/optimizing-data-pipelines-for-machine-learning-in-feature-stores\/","title":{"rendered":"Optimizing Data Pipelines for Machine Learning in Feature Stores"},"content":{"rendered":"
Data pipelines (i.e., converting raw data to features) are critical for machine learning (ML) models, yet their development and management is time-consuming. Feature stores have recently emerged as a new “DBMS-for-ML” with the premise of enabling data scientists and engineers to define and manage their data pipelines. While current feature stores fulfill their promise from a functionality perspective, they are resource-hungry—with ample opportunities for implementing database-style optimizations to enhance their performance. In this paper, we propose a novel set of optimizations specifically targeted for point-in-time join, which is a critical operation in data pipelines. We implement these optimizations on top of Feathr: a widely-used feature store, and evaluate them on use cases from both the TPCx-AI benchmark and real-world online retail scenarios. Our thorough experimental analysis shows that our optimizations can accelerate data pipelines by up to 3\u00d7 over state-of-the-art baselines.<\/p>\n","protected":false},"excerpt":{"rendered":"
Data pipelines (i.e., converting raw data to features) are critical for machine learning (ML) models, yet their development and management is time-consuming. Feature stores have recently emerged as a new “DBMS-for-ML” with the premise of enabling data scientists and engineers to define and manage their data pipelines. While current feature stores fulfill their promise from […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691],"msr-conference":[],"msr-journal":[268344],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1076202","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us","msr-field-of-study-computer-science"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-8-31","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"16","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.14778\/3625054.3625060","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.vldb.org\/pvldb\/vol16\/p4230-camacho-rodriguez.pdf","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Rui Liu","user_id":0,"rest_url":false},{"type":"text","value":"Kwanghyun Park","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Fotis Psallidas","user_id":40057,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Fotis Psallidas"},{"type":"text","value":"Xiaoyong Zhu","user_id":0,"rest_url":false},{"type":"text","value":"Jinghui Mo","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Rathijit Sen","user_id":39450,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Rathijit Sen"},{"type":"user_nicename","value":"Matteo Interlandi","user_id":39784,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Matteo Interlandi"},{"type":"text","value":"Konstantinos Karanasos","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yuanyuan Tian","user_id":40708,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yuanyuan Tian"},{"type":"user_nicename","value":"Jes\u00fas Camacho Rodr\u00edguez","user_id":40693,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jes\u00fas Camacho Rodr\u00edguez"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[684024],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1076202"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1076202\/revisions"}],"predecessor-version":[{"id":1076217,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1076202\/revisions\/1076217"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1076202"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1076202"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1076202"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1076202"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1076202"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1076202"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1076202"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1076202"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1076202"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1076202"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1076202"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1076202"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1076202"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1076202"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1076202"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1076202"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}