{"id":1083420,"date":"2024-09-06T14:37:38","date_gmt":"2024-09-06T21:37:38","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1083420"},"modified":"2024-09-06T14:37:38","modified_gmt":"2024-09-06T21:37:38","slug":"optimizing-gpu-data-center-power","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/optimizing-gpu-data-center-power\/","title":{"rendered":"Optimizing GPU Data Center Power"},"content":{"rendered":"

GPUs are used in products from ultra-low power mobile devices to high performance machine learning accelerators in data centers. Across the products, power and power delivery have become top limiters to performance and are key considerations in the early stages of product definition and design. In particular, the power and power delivery problem has been significantly exacerbated with the recent trends in the growth of AI workloads. In this joint AMD and Microsoft paper, we present some of the power optimizations used in latest generation of AMD GPUs including the recently announced AMD Instinct\u2122 MI300 GPU. To this end, we cover power and power delivery optimization techniques spanning the product life cycle from architecture, physical design, validation, test, manufacturing and conclude with a data center scale view of the challenges ahead to power optimize the GPUs for the data centers of the future.<\/p>\n","protected":false},"excerpt":{"rendered":"

GPUs are used in products from ultra-low power mobile devices to high performance machine learning accelerators in data centers. Across the products, power and power delivery have become top limiters to performance and are key considerations in the early stages of product definition and design. In particular, the power and power delivery problem has been […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246739],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1083420","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us","msr-field-of-study-computer-hardware"],"msr_publishername":"IEEE","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-11","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"IEEE","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.apccas2024.org\/","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Tawfik Rahal-Arabi","user_id":0,"rest_url":false},{"type":"text","value":"Paul Van der Arend","user_id":0,"rest_url":false},{"type":"text","value":"Ashish Jain","user_id":0,"rest_url":false},{"type":"text","value":"Mehdi Saidi","user_id":0,"rest_url":false},{"type":"text","value":"Rashad Oreifej","user_id":0,"rest_url":false},{"type":"text","value":"Sriram Sundaram","user_id":0,"rest_url":false},{"type":"text","value":"Srilatha Manne","user_id":0,"rest_url":false},{"type":"text","value":"Indrani Paul","user_id":0,"rest_url":false},{"type":"text","value":"Rajit Seahra","user_id":0,"rest_url":false},{"type":"text","value":"Frank Helms","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Esha Choukse","user_id":40417,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Esha Choukse"},{"type":"text","value":"Nithish Mahalingam","user_id":0,"rest_url":false},{"type":"guest","value":"brijesh-warrier","user_id":956994,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=brijesh-warrier"},{"type":"user_nicename","value":"Ricardo Bianchini","user_id":33393,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ricardo Bianchini"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[282170],"msr_project":[1017939],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":1017939,"post_title":"Efficient AI","post_name":"efficient-ai","post_type":"msr-project","post_date":"2024-03-22 17:14:57","post_modified":"2024-09-06 14:53:30","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/efficient-ai\/","post_excerpt":"Making Azure's big bet possible Recent innovations in generative large language models (LLMs) have made their applications and use-cases ubiquitous. This has led to large-scale deployments of these models, using complex, expensive, and power-hungry AI accelerators, most commonly GPUs. These developments make LLM training and inference efficiency an important challenge. In the Azure Research - Systems (opens in new tab) group we are working on improving the Azure infrastructure including hardware, power, and serving. Check…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/1017939"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1083420"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1083420\/revisions"}],"predecessor-version":[{"id":1083423,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1083420\/revisions\/1083423"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1083420"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1083420"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1083420"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1083420"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1083420"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1083420"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1083420"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1083420"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1083420"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1083420"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1083420"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1083420"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1083420"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1083420"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1083420"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1083420"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}