{"id":1101423,"date":"2024-11-06T04:58:15","date_gmt":"2024-11-06T12:58:15","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1101423"},"modified":"2024-11-06T05:03:41","modified_gmt":"2024-11-06T13:03:41","slug":"promptintern","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/promptintern\/","title":{"rendered":"PromptIntern: Saving Inference Costs by Internalizing Recurrent Prompt during Large Language Model Fine-tuning"},"content":{"rendered":"

Recent advances in fine-tuning large language models (LLMs) have greatly enhanced their usage in domain-specific tasks. Despite the success, fine-tuning continues to rely on repeated and lengthy prompts, which escalate computational expenses, require more resources, and lead to slower inference. In this paper, we present a novel approach, PromptIntern, which internalizes prompt knowledge during model fine-tuning to achieve efficient inference and save costs. Instead of compressing the prompts for a vanilla model, PromptIntern aims to embed the recurrent prompt directly into the model parameters. We design a fine-tuning pipeline that includes instruction template compression, few-shot example absorption, and a progressive internalization strategy, effectively diminishing the need for intricate prompts during inference. Comprehensive experiments on challenging NL2Code tasks demonstrate that our method reduces input tokens by more than 90%, accelerates inference by 4.2 times, and reduces monetary inference costs by 88.3%.<\/p>\n","protected":false},"excerpt":{"rendered":"

Recent advances in fine-tuning large language models (LLMs) have greatly enhanced their usage in domain-specific tasks. Despite the success, fine-tuning continues to rely on repeated and lengthy prompts, which escalate computational expenses, require more resources, and lead to slower inference. In this paper, we present a novel approach, PromptIntern, which internalizes prompt knowledge during model […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545,13560],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[269148,269142],"msr-field-of-study":[],"msr-conference":[260143],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1101423","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-programming-languages-software-engineering","msr-locale-en_us","msr-post-option-approved-for-river","msr-post-option-include-in-river"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-11-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/11\/emnlp24-PromptIntern.pdf","id":"1101426","title":"emnlp24-promptintern","label_id":"243132","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2407.02211","label_id":"252679","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":1101426,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2024\/11\/emnlp24-PromptIntern.pdf"}],"msr-author-ordering":[{"type":"text","value":"Jiaru Zou","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Mengyu Zhou","user_id":37131,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Mengyu Zhou"},{"type":"text","value":"Tao Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Shi Han","user_id":33618,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shi Han"},{"type":"user_nicename","value":"Dongmei Zhang","user_id":31665,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dongmei Zhang"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[714577],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1101423"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1101423\/revisions"}],"predecessor-version":[{"id":1102740,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1101423\/revisions\/1102740"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1101423"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1101423"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1101423"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1101423"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1101423"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1101423"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1101423"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1101423"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1101423"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1101423"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1101423"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1101423"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1101423"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1101423"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1101423"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1101423"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}