{"id":1103550,"date":"2024-11-13T15:32:52","date_gmt":"2024-11-13T23:32:52","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1103550"},"modified":"2024-11-13T18:56:04","modified_gmt":"2024-11-14T02:56:04","slug":"a-theoretical-and-computational-analysis-of-full-strong-branching","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/a-theoretical-and-computational-analysis-of-full-strong-branching\/","title":{"rendered":"A theoretical and computational analysis of full strong-branching"},"content":{"rendered":"
Full strong-branching (henceforth referred to as strong-branching) is a well-known variable
\nselection rule that is known experimentally to produce signi cantly smaller branch-and-bound
\ntrees in comparison to all other known variable selection rules. In this paper, we attempt
\nan analysis of the performance of the strong-branching rule both from a theoretical and a
\ncomputational perspective. On the positive side for strong-branching we identify vertex cover as
\na class of instances where this rule provably works well. In particular, for vertex cover we present
\nan upper bound on the size of the branch-and-bound tree using strong-branching as a function
\nof the additive integrality gap, show how the Nemhauser-Trotter property of persistency which
\ncan be used as a pre-solve technique for vertex cover is being recursively and consistently used
\nthrough-out the strong-branching based branch-and-bound tree, and finally provide an example
\nof a vertex cover instance where not using strong-branching leads to a tree that has at least
\nexponentially more nodes than the branch-and-bound tree based on strong-branching. On the
\nnegative side for strong-branching, we identify another class of instances where strong-branching
\nbased branch-and-bound tree has exponentially larger tree in comparison to another branch-and
\nbound tree for solving these instances. On the computational side, we first present a dynamic
\nprogramming algorithm to find an optimal branch-and-bound tree for any mixed integer linear
\nprogram (MILP) with n binary variables whose running time is poly(data(I))*3^n. Then we
\nconduct experiments on various types of instances like the lot-sizing problem and its variants,
\npacking integer programs (IP), covering IPs, chance constrained IPs, vertex cover, etc., to
\nunderstand how much larger is the size of the strong-branching based branch-and-bound tree in
\ncomparison to the optimal branch-and-bound tree. The main take-away from these experiments
\nis that for all these instances, the size of the strong-branching based branch-and-bound tree is
\nwithin a factor of two of the size of the optimal branch-and-bound tree.<\/p>\n","protected":false},"excerpt":{"rendered":"
Full strong-branching (henceforth referred to as strong-branching) is a well-known variable selection rule that is known experimentally to produce signi cantly smaller branch-and-bound trees in comparison to all other known variable selection rules. In this paper, we attempt an analysis of the performance of the strong-branching rule both from a theoretical and a computational perspective. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[269148,269142],"msr-field-of-study":[246691,261560,246814,246907],"msr-conference":[],"msr-journal":[269226],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1103550","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us","msr-post-option-approved-for-river","msr-post-option-include-in-river","msr-field-of-study-computer-science","msr-field-of-study-integer-programming","msr-field-of-study-mathematical-optimization","msr-field-of-study-mathematics"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-10-19","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"Math Programming","msr_volume":"205","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.1007\/s10107-023-01977-x","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2110.10754","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.org\/rec\/journals\/mp\/DeyDMS24.html","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/2110.10754","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Santanu S. Dey","user_id":0,"rest_url":false},{"type":"text","value":"Yatharth Dubey","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Marco Molinaro","user_id":42204,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Marco Molinaro"},{"type":"text","value":"Prachi Shah","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[569136],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1103550"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1103550\/revisions"}],"predecessor-version":[{"id":1103649,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1103550\/revisions\/1103649"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1103550"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1103550"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1103550"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1103550"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1103550"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1103550"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1103550"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1103550"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1103550"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1103550"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1103550"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1103550"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1103550"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1103550"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1103550"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1103550"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}