{"id":1103949,"date":"2024-11-14T10:19:14","date_gmt":"2024-11-14T18:19:14","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1103949"},"modified":"2024-11-15T06:44:49","modified_gmt":"2024-11-15T14:44:49","slug":"online-and-random-order-load-balancing-simultaneously","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/online-and-random-order-load-balancing-simultaneously\/","title":{"rendered":"Online and Random-order Load Balancing Simultaneously"},"content":{"rendered":"

We consider the problem of online load balancing under lp-norms: sequential jobs need to be assigned to one of the machines and the goal is to minimize the lp-norm of the machine loads. This generalizes the classical problem of scheduling for makespan minimization (case l\u221e) and has been thoroughly studied. However, despite the recent push for beyond worst-case analyses, no such results are known for this problem.In this paper we provide algorithms with simultaneous guarantees for the worst-case model as well as for the random-order (i.e. secretary) model, where an arbitrary set of jobs comes in random order. First, we show that the greedy algorithm (with restart), known to have optimal O(p) worst-case guarantee, also has a (typically) improved random-order guarantee. However, the behavior of this algorithm in the random-order model degrades with p. We then propose algorithm SimultaneousLB that has simultaneously optimal guarantees (within constants) in both worst-case and random-order models. In particular, the random-order guarantee of SimultaneousLB improves as p increases.One of the main components is a new algorithm with improved regret for Online Linear Optimization (OLO) over the non-negative vectors in the lq ball. Interestingly, this OLO algorithm is also used to prove a purely probabilistic inequality that controls the correlations arising in the random-order model, a common source of difficulty for the analysis. Another important component used in both SimultaneousLB and our OLO algorithm is a smoothing of the lp-norm that may be of independent interest. This smoothness property allows us to see algorithm SimultaneousLB as essentially a greedy one in the worst-case model and as a primal-dual one in the random-order model, which is instrumental for its simultaneous guarantees.<\/p>\n","protected":false},"excerpt":{"rendered":"

We consider the problem of online load balancing under lp-norms: sequential jobs need to be assigned to one of the machines and the goal is to minimize the lp-norm of the machine loads. This generalizes the classical problem of scheduling for makespan minimization (case l\u221e) and has been thoroughly studied. However, despite the recent push […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691,246907],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1103949","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us","msr-field-of-study-computer-science","msr-field-of-study-mathematics"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2017-10-23","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/1610.07639","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.org\/rec\/conf\/soda\/Molinaro17.html","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/epubs.siam.org\/doi\/pdf\/10.1137\/1.9781611974782.108","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Marco Molinaro","user_id":42204,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Marco Molinaro"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[569136],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1103949"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1103949\/revisions"}],"predecessor-version":[{"id":1103952,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1103949\/revisions\/1103952"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1103949"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1103949"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1103949"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1103949"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1103949"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1103949"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1103949"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1103949"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1103949"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1103949"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1103949"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1103949"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1103949"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1103949"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1103949"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1103949"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}