{"id":1105437,"date":"2024-11-19T13:35:47","date_gmt":"2024-11-19T21:35:47","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1105437"},"modified":"2024-11-19T13:35:48","modified_gmt":"2024-11-19T21:35:48","slug":"studying-and-mitigating-biases-in-sign-language-understanding-models","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/studying-and-mitigating-biases-in-sign-language-understanding-models\/","title":{"rendered":"Studying and Mitigating Biases in Sign Language Understanding Models"},"content":{"rendered":"

Ensuring that the benefits of sign language technologies are distributed equitably among all community members is crucial. Thus, it is important to address potential biases and inequities that may arise from the design or use of these resources. Crowd-sourced sign language datasets, such as the ASL Citizen dataset, are great resources for improving accessibility and preserving linguistic diversity, but they must be used thoughtfully to avoid reinforcing existing biases.In this work, we utilize the rich information about participant demographics and lexical features present in the ASL Citizen dataset to study and document the biases that may result from models trained on crowd-sourced sign datasets. Further, we apply several bias mitigation techniques during model training, and find that these techniques reduce performance disparities without decreasing accuracy. With the publication of this work, we release the demographic information about the participants in the ASL Citizen dataset to encourage future bias mitigation work in this space.<\/p>\n","protected":false},"excerpt":{"rendered":"

Ensuring that the benefits of sign language technologies are distributed equitably among all community members is crucial. Thus, it is important to address potential biases and inequities that may arise from the design or use of these resources. Crowd-sourced sign language datasets, such as the ASL Citizen dataset, are great resources for improving accessibility and […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[269148,269142],"msr-field-of-study":[246691],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1105437","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-post-option-approved-for-river","msr-post-option-include-in-river","msr-field-of-study-computer-science"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-10-6","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"ACM","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.48550\/arXiv.2410.05206","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/aclanthology.org\/2024.emnlp-main.17\/","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2410.05206","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Katherine Atwell","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Danielle Bragg","user_id":37592,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Danielle Bragg"},{"type":"text","value":"Malihe Alikhani","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199563],"msr_event":[],"msr_group":[],"msr_project":[932478],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":932478,"post_title":"ASL Citizen","post_name":"asl-citizen","post_type":"msr-project","post_date":"2023-06-06 10:00:55","post_modified":"2024-11-07 17:41:54","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/asl-citizen\/","post_excerpt":"A Community-sourced Dataset for Advancing Isolated Sign Language Recognition Signed languages are the primary languages of about 70 million D\/deaf people worldwide (opens in new tab). Despite their importance, existing information and communication technologies are primarily designed for written or spoken language. Though automated solutions might help address such accessibility gaps, the state of sign language modeling is far behind that of spoken language modeling, largely due to lack of appropriate training data. Prior datasets suffer from a…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/932478"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1105437"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1105437\/revisions"}],"predecessor-version":[{"id":1105443,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1105437\/revisions\/1105443"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1105437"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1105437"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1105437"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1105437"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1105437"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1105437"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1105437"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1105437"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1105437"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1105437"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1105437"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1105437"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1105437"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1105437"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1105437"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1105437"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}