{"id":1130466,"date":"2025-02-18T18:57:13","date_gmt":"2025-02-19T02:57:13","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1130466"},"modified":"2025-02-18T18:57:14","modified_gmt":"2025-02-19T02:57:14","slug":"scalable-compressed-phenotypic-screening-using-pooled-perturbations","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/scalable-compressed-phenotypic-screening-using-pooled-perturbations\/","title":{"rendered":"Scalable, compressed phenotypic screening using pooled perturbations."},"content":{"rendered":"
High-throughput phenotypic screens using biochemical perturbations and high-content readouts are constrained by limitations of scale. To address this, we establish a method of pooling exogenous perturbations followed by computational deconvolution to reduce required sample size, labor and cost. We demonstrate the increased efficiency of compressed experimental designs compared to conventional approaches through benchmarking with a bioactive small-molecule library and a high-content imaging readout. We then apply compressed screening in two biological discovery campaigns. In the first, we use early-passage pancreatic cancer organoids to map transcriptional responses to a library of recombinant tumor microenvironment protein ligands, uncovering reproducible phenotypic shifts induced by specific ligands distinct from canonical reference signatures and correlated with clinical outcome. In the second, we identify the pleotropic modulatory effects of a chemical compound library with known mechanisms of action on primary human peripheral blood mononuclear cell immune responses. In sum, our approach empowers phenotypic screens with information-rich readouts to advance drug discovery efforts and basic biological inquiry.<\/p>\n","protected":false},"excerpt":{"rendered":"
High-throughput phenotypic screens using biochemical perturbations and high-content readouts are constrained by limitations of scale. To address this, we establish a method of pooling exogenous perturbations followed by computational deconvolution to reduce required sample size, labor and cost. We demonstrate the increased efficiency of compressed experimental designs compared to conventional approaches through benchmarking with a […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13553],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[269148,269142],"msr-field-of-study":[250972],"msr-conference":[],"msr-journal":[269754],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1130466","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-medical-health-genomics","msr-locale-en_us","msr-post-option-approved-for-river","msr-post-option-include-in-river","msr-field-of-study-biology"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-10-6","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.1038\/s41587-024-02403-z","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.nature.com\/articles\/s41587-024-02403-z","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Nuo Liu","user_id":0,"rest_url":false},{"type":"text","value":"Walaa E. Kattan","user_id":0,"rest_url":false},{"type":"text","value":"Benjamin E. Mead","user_id":0,"rest_url":false},{"type":"text","value":"Conner Kummerlowe","user_id":0,"rest_url":false},{"type":"text","value":"Thomas Cheng","user_id":0,"rest_url":false},{"type":"text","value":"Sarah Ingabire","user_id":0,"rest_url":false},{"type":"text","value":"Jaime H Cheah","user_id":0,"rest_url":false},{"type":"text","value":"Christian K Soule","user_id":0,"rest_url":false},{"type":"text","value":"Anita Vrcic","user_id":0,"rest_url":false},{"type":"text","value":"Jane K. McIninch","user_id":0,"rest_url":false},{"type":"text","value":"Sergio Triana","user_id":0,"rest_url":false},{"type":"text","value":"Manuel Guzman","user_id":0,"rest_url":false},{"type":"text","value":"Tyler T. Dao","user_id":0,"rest_url":false},{"type":"text","value":"Joshua M. Peters","user_id":0,"rest_url":false},{"type":"text","value":"Kristen E. Lowder","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Lorin Crawford","user_id":39660,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lorin Crawford"},{"type":"user_nicename","value":"Ava Amini","user_id":40432,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ava Amini"},{"type":"text","value":"Paul C. Blainey","user_id":0,"rest_url":false},{"type":"text","value":"William C. Hahn","user_id":0,"rest_url":false},{"type":"text","value":"Brian Cleary","user_id":0,"rest_url":false},{"type":"text","value":"Bryan D. Bryson","user_id":0,"rest_url":false},{"type":"guest","value":"peter-s-winter","user_id":994587,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=peter-s-winter"},{"type":"guest","value":"srivatsan-raghavan","user_id":994581,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=srivatsan-raghavan"},{"type":"text","value":"Alex K. Shalek","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199563,849856],"msr_event":[],"msr_group":[703342],"msr_project":[994551],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":994551,"post_title":"Project Ex Vivo","post_name":"project-ex-vivo","post_type":"msr-project","post_date":"2024-01-12 08:32:02","post_modified":"2025-02-18 19:16:18","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/project-ex-vivo\/","post_excerpt":"Defining, engineering, and targeting cell states in cancer Microsoft & the Broad Institute Project Ex Vivo is a joint cancer research collaboration between Microsoft and the Broad Institute, with support from the Dana-Farber Cancer Institute. By synergizing each other\u2019s world-leading expertise in AI, high-throughput biology, and clinical oncology, we are building a true end-to-end framework for precision oncology: from computation, to wet-lab experimentation, to the clinic, and back again. Cancer is understood primarily as a…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/994551"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1130466","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1130466\/revisions"}],"predecessor-version":[{"id":1130469,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1130466\/revisions\/1130469"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1130466"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1130466"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1130466"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1130466"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1130466"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1130466"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1130466"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1130466"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1130466"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1130466"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1130466"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1130466"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1130466"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1130466"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1130466"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1130466"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}