{"id":1133744,"date":"2025-03-05T18:41:53","date_gmt":"2025-03-06T02:41:53","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=1133744"},"modified":"2025-03-05T18:41:55","modified_gmt":"2025-03-06T02:41:55","slug":"sublinear-metric-steiner-tree-via-improved-bounds-for-set-cover","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/sublinear-metric-steiner-tree-via-improved-bounds-for-set-cover\/","title":{"rendered":"Sublinear Metric Steiner Tree via Improved Bounds for Set Cover"},"content":{"rendered":"
We study the metric Steiner tree problem in the sublinear query model. In this problem, for a set of n<\/span><\/span><\/span><\/span> points V<\/span><\/span><\/span><\/span> in a metric space given to us by means of query access to an n<\/span>\u00d7<\/span>n<\/span><\/span><\/span><\/span> matrix w<\/span><\/span><\/span><\/span>, and a set of terminals T<\/span>\u2286<\/span>V<\/span><\/span><\/span><\/span>, the goal is to find the minimum-weight subset of the edges that connects all the terminal vertices. We study the metric Steiner tree problem in the sublinear query model. In this problem, for a set of n points V in a metric space given to us by means of query access to an n\u00d7n matrix w, and a set of terminals T\u2286V, the goal is to find the minimum-weight subset of the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-1133744","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2025-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2411.09059","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Sepideh Mahabadi","user_id":40780,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sepideh Mahabadi"},{"type":"text","value":"Mohammad Roghani","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Jakub Tarnawski","user_id":38820,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jakub Tarnawski"},{"type":"text","value":"Ali Vakilian","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[437022],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1133744","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":4,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1133744\/revisions"}],"predecessor-version":[{"id":1133748,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/1133744\/revisions\/1133748"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=1133744"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=1133744"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=1133744"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=1133744"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=1133744"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=1133744"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=1133744"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=1133744"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=1133744"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=1133744"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=1133744"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=1133744"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=1133744"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=1133744"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=1133744"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=1133744"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}
\nRecently, Chen, Khanna and Tan [SODA’23] gave an algorithm that uses \u00d5(<\/span>n^(<\/span>13<\/span>\/<\/span><\/span><\/span>7)<\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span> queries and outputs a (<\/span>2<\/span>\u2212<\/span>\u03b7<\/span>)<\/span><\/span><\/span><\/span>-estimate of the metric Steiner tree weight, where \u03b7<\/span>><\/span>0<\/span><\/span><\/span><\/span> is a universal constant. A key component in their algorithm is a sublinear algorithm for a particular set cover problem where, given a set system (<\/span>U<\/span>,<\/span>F<\/span>)<\/span><\/span><\/span><\/span>, the goal is to provide a multiplicative-additive estimate for |<\/span><\/span><\/span>U<\/span>|<\/span><\/span><\/span>\u2212<\/span>SC<\/span><\/span><\/span>(<\/span>U<\/span>,<\/span>F<\/span>)<\/span><\/span><\/span><\/span>. Here U<\/span><\/span><\/span><\/span> is the set of elements, F<\/span><\/span><\/span><\/span> is the collection of sets, and SC<\/span><\/span><\/span>(<\/span>U<\/span>,<\/span>F<\/span>)<\/span><\/span><\/span><\/span> denotes the optimal set cover size of (<\/span>U<\/span>,<\/span>F<\/span>)<\/span><\/span><\/span><\/span>. In particular, their algorithm returns a (<\/span>1<\/span>\/<\/span><\/span><\/span>4<\/span>,<\/span>\u03b5<\/span>\u22c5<\/span>|<\/span><\/span><\/span>U<\/span>|<\/span><\/span><\/span>)<\/span><\/span><\/span><\/span>-multiplicative-additive estimate for this set cover problem using \u00d5<\/span><\/span><\/span><\/span>(<\/span>|<\/span><\/span><\/span>F<\/span>|^(<\/span><\/span><\/span>7<\/span>\/<\/span><\/span><\/span>4)<\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span> membership oracle queries (querying whether a set S<\/span><\/span><\/span><\/span> contains an e<\/span><\/span><\/span><\/span>), where \u03b5<\/span><\/span><\/span><\/span> is a fixed constant.
\nIn this work, we improve the query complexity of (<\/span>2<\/span>\u2212<\/span>\u03b7<\/span>)<\/span><\/span><\/span><\/span>-estimating the metric Steiner tree weight to \u00d5<\/span><\/span><\/span><\/span>(<\/span>n^(<\/span>5<\/span>\/<\/span><\/span><\/span>3)<\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span> by showing a (<\/span>1<\/span>\/<\/span><\/span><\/span>2<\/span>,<\/span>\u03b5<\/span>\u22c5<\/span>|<\/span><\/span><\/span>U<\/span>|<\/span><\/span><\/span>)<\/span><\/span><\/span><\/span>-estimate for the above set cover problem using \u00d5(<\/span>|<\/span><\/span><\/span>F<\/span>|^(<\/span><\/span><\/span>5<\/span>\/<\/span><\/span><\/span>3)<\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span> membership queries. To design our set cover algorithm, we estimate the size of a random greedy maximal matching for an auxiliary multigraph that the algorithm constructs implicitly, without access to its adjacency list or matrix.<\/p>\n","protected":false},"excerpt":{"rendered":"