{"id":144955,"date":"2008-07-01T00:00:00","date_gmt":"2008-07-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/a-decision-theoretic-framework-for-ranking-using-implicit-feedback\/"},"modified":"2018-10-16T20:04:48","modified_gmt":"2018-10-17T03:04:48","slug":"a-decision-theoretic-framework-for-ranking-using-implicit-feedback","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/a-decision-theoretic-framework-for-ranking-using-implicit-feedback\/","title":{"rendered":"A Decision Theoretic Framework for Ranking using Implicit Feedback"},"content":{"rendered":"
\n

This paper presents a decision theoretic ranking system that incorporates both explicit and implicit feedback. The system has a model that predicts, given all available data at query time, different interactions a person might have with search results. Possible interactions include relevance labelling and clicking. We define a utility function that takes as input the outputs of the interaction model to provide a real valued score to the user\u2019s session. The optimal ranking is the list of documents that, in expectation under the model, maximizes the utility for a user session.<\/p>\n

The system presented is based on a simple example utility function that combines both click behavior and labelling. The click prediction model is a Bayesian generalized linear model. Its notable characteristic is that it incorporates both weights for explanatory features and weights for each query-document pair. This allows the model to generalize to unseen queries but makes it at the same time flexible enough to keep in a \u2018memory\u2019 where the model should deviate from its feature based prediction. Such a click-predicting model could be particularly useful in an application such as enterprise search, allowing on-site adaptation to local documents and user behaviour. The example utility function has a parameter that controls the trade-off between optimizing for clicks and optimizing for labels. Experimental results in the context of enterprise search show that a balance in the trade-off leads to the best NDCG and good (predicted) click-through.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper presents a decision theoretic ranking system that incorporates both explicit and implicit feedback. The system has a model that predicts, given all available data at query time, different interactions a person might have with search results. Possible interactions include relevance labelling and clicking. We define a utility function that takes as input the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-144955","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"SIGIR 2008 Workshop on Learning to Rank for Information Retrieval","msr_affiliation":"","msr_published_date":"2008-07-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"225565","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"decisiontheoryCameraReady.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/07\/decisiontheoryCameraReady.pdf","id":225565,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":225565,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/07\/decisiontheoryCameraReady.pdf"}],"msr-author-ordering":[{"type":"text","value":"Onno Zoeter","user_id":0,"rest_url":false},{"type":"user_nicename","value":"mitaylor","user_id":32956,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mitaylor"},{"type":"user_nicename","value":"esnelson","user_id":31762,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=esnelson"},{"type":"user_nicename","value":"joguiver","user_id":32363,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=joguiver"},{"type":"user_nicename","value":"nickcr","user_id":33088,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=nickcr"},{"type":"user_nicename","value":"szummer","user_id":33785,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=szummer"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[267093],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/144955"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/144955\/revisions"}],"predecessor-version":[{"id":521637,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/144955\/revisions\/521637"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=144955"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=144955"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=144955"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=144955"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=144955"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=144955"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=144955"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=144955"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=144955"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=144955"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=144955"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=144955"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=144955"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=144955"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=144955"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=144955"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}