{"id":145472,"date":"2007-06-01T00:00:00","date_gmt":"2007-06-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/the-price-of-privacy-and-the-limits-of-lp-decoding\/"},"modified":"2018-10-16T20:18:04","modified_gmt":"2018-10-17T03:18:04","slug":"the-price-of-privacy-and-the-limits-of-lp-decoding","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/the-price-of-privacy-and-the-limits-of-lp-decoding\/","title":{"rendered":"The Price of Privacy and the Limits of LP Decoding"},"content":{"rendered":"

This work is at the intersection of two lines of research. One line, initiated by Dinur and Nissim, investigates the price, in accuracy, of protecting privacy in a statistical database. The second, growing from an extensive literature on compressed sensing (see in particular the work of Donoho and collaborators [14, 7, 13, 11]) and explicitly connected to error-correcting codes by Cand\u00e8s and Tao ([4]; see also [5, 3]), is in the use of linear programming for error correction.<\/p>\n

Our principal result is the discovery of a sharp threshhold \u03c1\u2217 \u2248 0.239, so that if \u03c1 < \u03c1\u2217 and A is a random m\u00d7n encoding matrix of independently chosen standard Gaussians, where m = O(n), then with overwhelming probability over choice of A, for all x \u2208Rn, LP decoding corrects b\u03c1mc arbitrary errors in the encoding Ax, while decoding can be made to fail if the error rate exceeds \u03c1\u2217. Our bound resolves an open question of Cand\u00e8s, Rudelson, Tao, and Vershyin [3] and (oddly, but explicably) refutes empirical conclusions of Donoho [11] and Cand\u00e8s et al [3]. By scaling and rounding we can easily transform these results to obtain polynomialtime decodable random linear codes with polynomial-sized alphabets tolerating any \u03c1 < \u03c1\u2217 \u2248 0.239 fraction of arbitrary errors.<\/p>\n

In the context of privacy-preserving datamining our results say that any privacy mechanism, interactive or noninteractive, providing reasonably accurate answers to a 0.761 fraction of randomly generated weighted subset sum queries, and arbitrary answers on the remaining 0.239 fraction, is blatantly non-private.<\/p>\n","protected":false},"excerpt":{"rendered":"

This work is at the intersection of two lines of research. One line, initiated by Dinur and Nissim, investigates the price, in accuracy, of protecting privacy in a statistical database. The second, growing from an extensive literature on compressed sensing (see in particular the work of Donoho and collaborators [14, 7, 13, 11]) and explicitly […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-145472","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"Association for Computing Machinery, Inc.","msr_edition":"Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC)","msr_affiliation":"","msr_published_date":"2007-06-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC)","msr_pages_string":"85-94","msr_chapter":"","msr_isbn":"978-1-59593-631-8","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"208614","msr_publicationurl":"http:\/\/doi.acm.org\/10.1145\/1250790.1250804","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"lp-decoding.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/lp-decoding.pdf","id":208614,"label_id":0},{"type":"url","title":"http:\/\/doi.acm.org\/10.1145\/1250790.1250804","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/doi.acm.org\/10.1145\/1250790.1250804"},{"id":208614,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/lp-decoding.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"dwork","user_id":31702,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dwork"},{"type":"user_nicename","value":"mcsherry","user_id":32863,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mcsherry"},{"type":"user_nicename","value":"kunal","user_id":32596,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=kunal"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[],"msr_project":[169518],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169518,"post_title":"Database Privacy","post_name":"database-privacy","post_type":"msr-project","post_date":"2003-11-24 13:44:35","post_modified":"2020-03-12 16:39:21","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/database-privacy\/","post_excerpt":"Overview The problem of statistical disclosure control\u2014revealing accurate statistics about a population while preserving the privacy of individuals\u2014has a venerable history. An extensive literature spans multiple disciplines: statistics, theoretical computer science, security, and databases.\u00a0 Nevertheless, despite this extensive literature, \u00abprivacy breaches\u00bb are common, both in the literature and in practice, even when security and data integrity are not compromised. This project revisits private data analysis from the perspective of modern cryptography.\u00a0 We address many previous…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169518"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/145472"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/145472\/revisions"}],"predecessor-version":[{"id":418292,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/145472\/revisions\/418292"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=145472"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=145472"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=145472"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=145472"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=145472"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=145472"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=145472"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=145472"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=145472"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=145472"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=145472"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=145472"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=145472"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=145472"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=145472"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=145472"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}