{"id":145480,"date":"2005-06-01T00:00:00","date_gmt":"2005-06-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/practical-privacy-the-sulq-framework\/"},"modified":"2018-10-16T20:18:31","modified_gmt":"2018-10-17T03:18:31","slug":"practical-privacy-the-sulq-framework","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/practical-privacy-the-sulq-framework\/","title":{"rendered":"Practical Privacy: The SuLQ Framework"},"content":{"rendered":"
We consider a statistical database in which a trusted administrator introduces noise to the query responses with the goal of maintaining privacy of individual database entries. In such a database, a query consists of a pair (S, f) where S is a set of rows in the database and f is a function mapping database rows to {0, 1}. The true response is r\u2208S f(DBr), a noisy version of which is released. Results of Dinur, Dwork, and Nissim show that a strong form of privacy can be maintained using a surprisingly small amount of noise \u2013 much less than the sampling error \u2013 provided the total number of queries is sublinear in the number of database rows. We call this query and (slightly) noisy reply the SuLQ (Sub-Linear Queries) primitive. The assumption of sublinearity becomes reasonable as databases grow increasingly large. We extend this work in two ways. First, we modify the privacy analysis to real-valued functions f. Second, we examine the computational power of the SuLQ primitive. We show that it is very powerful indeed, in that slightly noisy versons of the following computations can be carried out with very few invocations of the primitive: principal component analysis, k means clustering, the ID3 algorithm, the perceptron algorithm, and (apparently!) all algorithms in the statistical queries learning model.<\/p>\n","protected":false},"excerpt":{"rendered":"
We consider a statistical database in which a trusted administrator introduces noise to the query responses with the goal of maintaining privacy of individual database entries. In such a database, a query consists of a pair (S, f) where S is a set of rows in the database and f is a function mapping database […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13563,13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-145480","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-data-platform-analytics","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"","msr_edition":"24th ACM SIGMOD International Conference on Management of Data \/ Principles of Database Systems, Baltimore (PODS 2005)","msr_affiliation":"","msr_published_date":"2005-06-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"209516","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"bdmn.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/bdmn.pdf","id":209516,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":209516,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/bdmn.pdf"}],"msr-author-ordering":[{"type":"text","value":"Avrim Blum","user_id":0,"rest_url":false},{"type":"user_nicename","value":"dwork","user_id":31702,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dwork"},{"type":"user_nicename","value":"mcsherry","user_id":32863,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mcsherry"},{"type":"text","value":"Kobbi Nissim","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[],"msr_project":[169518],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169518,"post_title":"Database Privacy","post_name":"database-privacy","post_type":"msr-project","post_date":"2003-11-24 13:44:35","post_modified":"2020-03-12 16:39:21","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/database-privacy\/","post_excerpt":"Overview The problem of statistical disclosure control\u2014revealing accurate statistics about a population while preserving the privacy of individuals\u2014has a venerable history. An extensive literature spans multiple disciplines: statistics, theoretical computer science, security, and databases.\u00a0 Nevertheless, despite this extensive literature, \u00abprivacy breaches\u00bb are common, both in the literature and in practice, even when security and data integrity are not compromised. This project revisits private data analysis from the perspective of modern cryptography.\u00a0 We address many previous…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169518"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/145480"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/145480\/revisions"}],"predecessor-version":[{"id":526047,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/145480\/revisions\/526047"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=145480"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=145480"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=145480"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=145480"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=145480"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=145480"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=145480"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=145480"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=145480"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=145480"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=145480"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=145480"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=145480"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=145480"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=145480"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=145480"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}