{"id":150270,"date":"2003-10-01T00:00:00","date_gmt":"2003-10-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/a-sparse-probabilistic-learning-algorithm-for-real-time-tracking\/"},"modified":"2018-10-16T19:57:32","modified_gmt":"2018-10-17T02:57:32","slug":"a-sparse-probabilistic-learning-algorithm-for-real-time-tracking","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/a-sparse-probabilistic-learning-algorithm-for-real-time-tracking\/","title":{"rendered":"A Sparse Probabilistic Learning Algorithm for Real-Time Tracking"},"content":{"rendered":"

This paper addresses the problem of applying powerful pattern recognition algorithms based on kernels to ef\ufb01cient visual tracking. Recently Avidan [1] has shown that object recognizers using kernel-SVMs can be elegantly adapted to localization by means of spatial perturbation of the SVM, using optic \ufb02ow. Whereas Avidan\u2019s SVM applies to each frame of a video independently of other frames, the bene\ufb01ts of temporal fusion of data are well known. This issue is addressed here by using a fully probabilistic \u2018Relevance Vector Machine\u2019 (RVM) to generate observations with Gaussian distributions that can be fused over time. To improve performance further, rather than adapting a recognizer, we build a localizer directly using the regression form of the RVM. A classi\ufb01cation SVM is used in tandem, for object veri\ufb01cation, and this provides the capability of automatic initialization and recovery. The approach is demonstrated in real-time face and vehicle tracking systems. The \u2018sparsity\u2019 of the RVMs means that only a fraction of CPU time is required to track at frame rate. Tracker output is demonstrated in a camera management task in which zoom and pan are controlled in response to speaker\/vehicle position and orientation, over an extended period. The advantages of temporal fusion in this system are demonstrated<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper addresses the problem of applying powerful pattern recognition algorithms based on kernels to ef\ufb01cient visual tracking. Recently Avidan [1] has shown that object recognizers using kernel-SVMs can be elegantly adapted to localization by means of spatial perturbation of the SVM, using optic \ufb02ow. Whereas Avidan\u2019s SVM applies to each frame of a video […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-150270","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proc. Int. Conf. on Computer Vision","msr_affiliation":"","msr_published_date":"2003-10-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Proc. Int. Conf. on Computer Vision","msr_pages_string":"353\u2013360","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"227800","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"iccv.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2003\/10\/iccv.pdf","id":227800,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":227800,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2003\/10\/iccv.pdf"}],"msr-author-ordering":[{"type":"text","value":"Oliver Williams","user_id":0,"rest_url":false},{"type":"user_nicename","value":"ablake","user_id":30797,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ablake"},{"type":"text","value":"Roberto Cipolla","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150270"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150270\/revisions"}],"predecessor-version":[{"id":514817,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150270\/revisions\/514817"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=150270"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=150270"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=150270"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=150270"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=150270"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=150270"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=150270"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=150270"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=150270"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=150270"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=150270"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=150270"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=150270"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=150270"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=150270"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=150270"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}