{"id":150634,"date":"2006-08-01T00:00:00","date_gmt":"2006-08-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/autocollage\/"},"modified":"2018-10-16T20:08:01","modified_gmt":"2018-10-17T03:08:01","slug":"autocollage","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/autocollage\/","title":{"rendered":"AutoCollage"},"content":{"rendered":"
The paper defines an automatic procedure for constructing a visually appealing collage from a collection of input images. The aim is that the resulting collage should be representative of the collection, summarising its main themes. It is also assembled largely seamlessly, using graph-cut, Poisson blending of alpha-masks, to hide the joins between input images. This paper makes several new contributions. Firstly, we show how energy terms can be included that: encourage the selection of a representative set of images; that are sensitive to particular object classes; that encourage a spatially efficient and seamless layout. Secondly the resulting optimization poses a search problem that, on the face of it, is computationally infeasible. Rather than attempt an expensive, integrated optimization procedure, we have developed a sequence of optimization steps, from static ranking of images, through region of interest optimization, optimal packing by constraint satisfaction, and lastly graph-cut alpha-expansion. To illustrate the power of AutoCollage, we have used it to create collages of many home photo sets; we also conducted a user study in which AutoCollage outperformed competitive methods.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
The paper defines an automatic procedure for constructing a visually appealing collage from a collection of input images. The aim is that the resulting collage should be representative of the collection, summarising its main themes. It is also assembled largely seamlessly, using graph-cut, Poisson blending of alpha-masks, to hide the joins between input images. This […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-150634","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"ACM Transactions on Graphics (SIGGRAPH)","msr_affiliation":"","msr_published_date":"2006-08-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"ACM Transactions on Graphics (SIGGRAPH)","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"229216","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"autocollage_rotheretal_siggraph2006.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2006\/08\/autocollage_rotheretal_siggraph2006.pdf","id":229216,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":229216,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2006\/08\/autocollage_rotheretal_siggraph2006.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"carrot","user_id":31338,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=carrot"},{"type":"user_nicename","value":"lucasb","user_id":32744,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=lucasb"},{"type":"user_nicename","value":"youssefh","user_id":35047,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=youssefh"},{"type":"user_nicename","value":"ablake","user_id":30797,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ablake"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[169664],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":169664,"post_title":"Microsoft Automatic Graph Layout","post_name":"microsoft-automatic-graph-layout","post_type":"msr-project","post_date":"2007-12-05 11:48:57","post_modified":"2017-06-19 16:12:29","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/microsoft-automatic-graph-layout\/","post_excerpt":"MSAGL is a .NET tool for graph layout and viewing. It was developed in Microsoft by Lev Nachmanson, Sergey Pupyrev, Tim Dwyer and Ted Hart. MSAGL is available as open source here. All samples use the C# language. The Distribution Content and Important Features The package contains the following: Layout engine (Microsoft.MSAGL.dll) - The core layout functionality. This component can be used directly in cases when visualization is handled by a tool other than MSAGL.…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169664"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150634"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150634\/revisions"}],"predecessor-version":[{"id":522807,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150634\/revisions\/522807"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=150634"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=150634"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=150634"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=150634"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=150634"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=150634"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=150634"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=150634"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=150634"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=150634"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=150634"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=150634"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=150634"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=150634"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=150634"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=150634"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}