{"id":150814,"date":"2007-07-01T00:00:00","date_gmt":"2007-07-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/using-dependency-order-templates-to-improve-generality-in-translation\/"},"modified":"2018-10-16T20:08:34","modified_gmt":"2018-10-17T03:08:34","slug":"using-dependency-order-templates-to-improve-generality-in-translation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/using-dependency-order-templates-to-improve-generality-in-translation\/","title":{"rendered":"Using Dependency Order Templates to Improve Generality in Translation"},"content":{"rendered":"
Today’s statistical machine translation
\nsystems generalize poorly to new
\ndomains. Even small shifts can cause
\nprecipitous drops in translation quality.
\nPhrasal systems rely heavily, for both
\nreordering and contextual translation, on
\nlong phrases that simply fail to match outof-
\ndomain text. Hierarchical systems
\nattempt to generalize these phrases but
\ntheir learned rules are subject to severe
\nconstraints. Syntactic systems can learn
\nlexicalized and unlexicalized rules, but the
\njoint modeling of lexical choice and
\nreordering can narrow the applicability of
\nlearned rules. The treelet approach models
\nreordering separately from lexical choice,
\nusing a discriminatively trained order
\nmodel, which allows treelets to apply
\nbroadly, and has shown better
\ngeneralization to new domains, but suffers
\na factorially large search space. We
\nintroduce a new reordering model based
\non dependency order templates, and show
\nthat it outperforms both phrasal and treelet
\nsystems on in-domain and out-of-domain
\ntext, while limiting the search space.<\/p>\n","protected":false},"excerpt":{"rendered":"
Today’s statistical machine translation systems generalize poorly to new domains. Even small shifts can cause precipitous drops in translation quality. Phrasal systems rely heavily, for both reordering and contextual translation, on long phrases that simply fail to match outof- domain text. Hierarchical systems attempt to generalize these phrases but their learned rules are subject to […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-150814","msr-research-item","type-msr-research-item","status-publish","hentry","msr-locale-en_us"],"msr_publishername":"Association for Computational Linguistics","msr_edition":"Proceedings of the Second Workshop on Statistical Machine Translation at ACL 2007","msr_affiliation":"","msr_published_date":"2007-07-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/acl.ldc.upenn.edu\/W\/W07\/W07-0701.pdf","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/acl.ldc.upenn.edu\/W\/W07\/W07-0701.pdf","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/acl.ldc.upenn.edu\/W\/W07\/W07-0701.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"arulm","user_id":31103,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=arulm"},{"type":"user_nicename","value":"chrisq","user_id":31430,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chrisq"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144736,268548],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150814"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150814\/revisions"}],"predecessor-version":[{"id":522879,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/150814\/revisions\/522879"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=150814"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=150814"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=150814"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=150814"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=150814"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=150814"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=150814"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=150814"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=150814"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=150814"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=150814"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=150814"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=150814"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=150814"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=150814"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=150814"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}