{"id":151058,"date":"1998-06-01T00:00:00","date_gmt":"1998-06-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/random-sampling-for-histogram-construction-how-much-is-enough\/"},"modified":"2018-10-16T20:18:48","modified_gmt":"2018-10-17T03:18:48","slug":"random-sampling-for-histogram-construction-how-much-is-enough","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/random-sampling-for-histogram-construction-how-much-is-enough\/","title":{"rendered":"Random Sampling for Histogram Construction: How Much is Enough?"},"content":{"rendered":"
\n

Random sampling is a standard technique for constructing (approximate) histograms for query optimization. However, any real implementation in commercial products requires solving the hard problem of determining “How much sampling is enough?” We address this critical question in the context of equi-height histograms used in many commercial products, including Microsoft SQL Server. We introduce a conservative error metric capturing the intuition that for an approximate histogram to have low error, the error must be small in all regions of the histogram. We then present a result establishing an optimal bound on the amount of sampling required for pre-specified error bounds. We also describe an adaptive page sampling algorithm which achieves greater efficiency by using all values in a sampled page but adjusts the amount of sampling depending on clustering of values in pages. Next, we establish that the problem of estimating the number of distinct values is provably difficult, but propose a new error metric which has a reliable estimator and can still be exploited by query optimizers to influence the choice of execution plans. The algorithm for histogram construction was prototyped on Microsoft SQL Server 7.0 and we present experimental results showing that the adaptive algorithm accurately approximates the true histogram over different data distributions.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Random sampling is a standard technique for constructing (approximate) histograms for query optimization. However, any real implementation in commercial products requires solving the hard problem of determining “How much sampling is enough?” We address this critical question in the context of equi-height histograms used in many commercial products, including Microsoft SQL Server. We introduce a […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-151058","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"Association for Computing Machinery, Inc.","msr_edition":"SIGMOD","msr_affiliation":"","msr_published_date":"1998-06-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/dl.acm.org\/citation.cfm?id=276343","msr_doi":"10.1145\/276305.276343","msr_publication_uploader":[{"type":"url","title":"http:\/\/dl.acm.org\/citation.cfm?id=276343","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.1145\/276305.276343","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/dl.acm.org\/citation.cfm?id=276343"}],"msr-author-ordering":[{"type":"user_nicename","value":"surajitc","user_id":33764,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=surajitc"},{"type":"text","value":"Rajeev Motwani","user_id":0,"rest_url":false},{"type":"user_nicename","value":"viveknar","user_id":34602,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=viveknar"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[957177],"msr_project":[967236,169456],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":967236,"post_title":"Query Optimization for Database Systems","post_name":"query-optimization-for-database-systems","post_type":"msr-project","post_date":"2023-12-11 15:19:29","post_modified":"2023-12-11 15:19:32","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/query-optimization-for-database-systems\/","post_excerpt":"The query optimizer is a crucial component in a relational database system and is responsible for finding a good execution plan for a SQL query. For cloud database service providers, the importance of query optimization is amplified due to the scale (e.g., millions of databases hosted) and variety of different workloads for which the query optimizer is expected to work well \"out-of-the-box\". Query optimization is challenging due to the richness of SQL queries that contain…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/967236"}]}},{"ID":169456,"post_title":"AutoAdmin","post_name":"autoadmin","post_type":"msr-project","post_date":"2001-11-02 14:41:11","post_modified":"2019-02-05 12:04:17","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/autoadmin\/","post_excerpt":"Database management systems provide functionality that is central to developing business applications. Therefore, database management systems are increasingly being used as an important component in applications. Yet, the problem of tuning database management systems for achieving required performance is significant, and results in high total cost of ownership (TCO). The goal of our research in the AutoAdmin project is to make database systems self-tuning and self-administering. We achieve this by enabling databases to track the…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169456"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/151058"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/151058\/revisions"}],"predecessor-version":[{"id":525739,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/151058\/revisions\/525739"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=151058"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=151058"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=151058"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=151058"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=151058"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=151058"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=151058"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=151058"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=151058"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=151058"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=151058"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=151058"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=151058"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=151058"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=151058"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=151058"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}