{"id":152259,"date":"1995-03-01T00:00:00","date_gmt":"1995-03-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/ambiguity-in-the-acquisition-of-lexical-information\/"},"modified":"2018-10-16T22:01:18","modified_gmt":"2018-10-17T05:01:18","slug":"ambiguity-in-the-acquisition-of-lexical-information","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/ambiguity-in-the-acquisition-of-lexical-information\/","title":{"rendered":"Ambiguity in the Acquisition of Lexical Information"},"content":{"rendered":"
This paper describes an approach to the automatic identification of lexical information in on-line dictionaries. This approach uses bootstrapping techniques, specifically so that ambiguity in the dictionary text can be treated properly. This approach consists of processing an on-line dictionary multiple times, each time refining the lexical information previously acquired and identifying new lexical information. The strength of this approach is that lexical information can be acquired from definitions which are syntactically ambiguous, given that information acquired during the first pass can be used to improve the syntactic analysis of definitions in subsequent passes. In the context of a lexical knowledge base, the types of lexical information that need to be represented cannot be viewed as a fixed set, but rather as a set that will change given the resources of the lexical knowledge base and the requirements of analysis systems which access it.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
This paper describes an approach to the automatic identification of lexical information in on-line dictionaries. This approach uses bootstrapping techniques, specifically so that ambiguity in the dictionary text can be treated properly. This approach consists of processing an on-line dictionary multiple times, each time refining the lexical information previously acquired and identifying new lexical information. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-152259","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"American Association for Artificial Intelligence","msr_edition":"AAAI Symposium on Representation and Acquisition of Lexical Knowledge: TR SS-95-01","msr_affiliation":"","msr_published_date":"1995-03-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"7","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-95-18","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"AAAI Symposium on Representation and Acquisition of Lexical Knowledge: TR SS-95-01","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"224119","msr_publicationurl":"http:\/\/www.aaai.org\/","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"tr-95-18.doc","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/1995\/03\/tr-95-18.doc","id":224119,"label_id":0},{"type":"url","title":"http:\/\/www.aaai.org\/","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/www.aaai.org\/"},{"id":224119,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/1995\/03\/tr-95-18.doc"}],"msr-author-ordering":[{"type":"user_nicename","value":"lucyv","user_id":32746,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=lucyv"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[169675],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":169675,"post_title":"MindNet","post_name":"mindnet","post_type":"msr-project","post_date":"2001-12-19 17:44:32","post_modified":"2019-08-14 14:34:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/mindnet\/","post_excerpt":"Overview MindNet is a knowledge representation project that uses our broad-coverage parser to build semantic networks from dictionaries, encyclopedias, and free text. MindNets are produced by a fully automatic process that takes the input text, sentence-breaks it, parses each sentence to build a semantic dependency graph (Logical Form), aggregates these individual graphs into a single large graph, and then assigns probabilistic weights to subgraphs based on their frequency in the corpus as a whole. The…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169675"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152259"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152259\/revisions"}],"predecessor-version":[{"id":541284,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152259\/revisions\/541284"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=152259"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=152259"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=152259"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=152259"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=152259"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=152259"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=152259"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=152259"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=152259"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=152259"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=152259"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=152259"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=152259"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=152259"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=152259"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=152259"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}