{"id":152325,"date":"1998-05-01T00:00:00","date_gmt":"1998-05-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/mindnet-acquiring-and-structuring-semantic-information-from-text\/"},"modified":"2018-10-16T22:08:25","modified_gmt":"2018-10-17T05:08:25","slug":"mindnet-acquiring-and-structuring-semantic-information-from-text","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/mindnet-acquiring-and-structuring-semantic-information-from-text\/","title":{"rendered":"Mindnet: Acquiring And Structuring Semantic Information From Text"},"content":{"rendered":"
\n

As a lexical knowledge base constructed automatically from the definitions and example sentences in two machine-readable dictionaries (MRDs), MindNet embodies several features that distinguish it from prior work with MRDs. It is, however, more than this static resource alone. MindNet represents a general methodology for acquiring, structuring, accessing, and exploiting semantic information from natural language text. This paper provides an overview of the distinguishing characteristics of MindNet, the steps involved in its creation, and its extension beyond dictionary text.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

As a lexical knowledge base constructed automatically from the definitions and example sentences in two machine-readable dictionaries (MRDs), MindNet embodies several features that distinguish it from prior work with MRDs. It is, however, more than this static resource alone. MindNet represents a general methodology for acquiring, structuring, accessing, and exploiting semantic information from natural language […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-152325","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"Association for Computational Linguistics","msr_edition":"","msr_affiliation":"","msr_published_date":"1998-05-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"5","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-98-23","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"224650","msr_publicationurl":"http:\/\/www.aclweb.org\/","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"tr-98-23.doc","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/1998\/05\/tr-98-23.doc","id":224650,"label_id":0},{"type":"url","title":"http:\/\/www.aclweb.org\/","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/www.aclweb.org\/"},{"id":224650,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/1998\/05\/tr-98-23.doc"}],"msr-author-ordering":[{"type":"user_nicename","value":"lucyv","user_id":32746,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=lucyv"},{"type":"user_nicename","value":"billdol","user_id":31229,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=billdol"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[169675],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":169675,"post_title":"MindNet","post_name":"mindnet","post_type":"msr-project","post_date":"2001-12-19 17:44:32","post_modified":"2019-08-14 14:34:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/mindnet\/","post_excerpt":"Overview MindNet is a knowledge representation project that uses our broad-coverage parser to build semantic networks from dictionaries, encyclopedias, and free text. MindNets are produced by a fully automatic process that takes the input text, sentence-breaks it, parses each sentence to build a semantic dependency graph (Logical Form), aggregates these individual graphs into a single large graph, and then assigns probabilistic weights to subgraphs based on their frequency in the corpus as a whole. The…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169675"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152325"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152325\/revisions"}],"predecessor-version":[{"id":402497,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152325\/revisions\/402497"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=152325"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=152325"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=152325"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=152325"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=152325"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=152325"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=152325"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=152325"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=152325"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=152325"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=152325"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=152325"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=152325"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=152325"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=152325"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=152325"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}