{"id":152404,"date":"1999-09-01T00:00:00","date_gmt":"1999-09-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/the-scaling-window-of-the-2-sat-transition\/"},"modified":"2018-10-16T19:57:19","modified_gmt":"2018-10-17T02:57:19","slug":"the-scaling-window-of-the-2-sat-transition","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/the-scaling-window-of-the-2-sat-transition\/","title":{"rendered":"The Scaling Window of the 2-SAT Transition"},"content":{"rendered":"
\n

We consider the random 2-satisfiability problem, in which each instance is a formula that is the conjunction of m clauses of the form x ∧ y , chosen uniformly at random from among all 2-clauses on n Boolean variables and their negations. As m and n tend to infinity in the ratio m\/n → ∝ , the problem is known to have a phase transition at ∝ c = 1, below which the probability that the formula is satisfiable tends to one and above which it tends to zero. We determine the finite-size scaling about this transition, namely the scaling of the maximal window W(n, δ ) = (∝_(n, δ ), ∝ + (n, δ)) such that the probability of satisfiability is greater than 1– δ for ∝ ∝ +. We show W ( n , δ) = (1 – Θ ( n -1\/3 ), 1 + Θ ( n -1\/3 )), where the constants implicit in Θ depend on δ . We also determine the rates at which the probability of satisfiability approaches one and zero at the boundaries of the window. Namely, for m = (1 + ε ) n , where ε may depend on n as long as | ε | n 1\/3 is sufficiently large, we show the probability of satisfiability decays like exp ( – Θ ( n ε 3 )) above the window, and goes to one like 1 – Θ ( n -1 | ε| -3 ) below the window. We prove these results by defining an order parameter for the transition and establishing its scaling behavior in n both inside and outside the window. Using this order parameter, we prove that the 2-SAT phase transition is continuous with an order parameter critical exponent of 1. We also determine the values of two other critical exponents, showing that the exponents of 2-SAT are identical to those of the random graph.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

We consider the random 2-satisfiability problem, in which each instance is a formula that is the conjunction of m clauses of the form x ∧ y , chosen uniformly at random from among all 2-clauses on n Boolean variables and their negations. As m and n tend to infinity in the ratio m\/n → ∝ […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-152404","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"1999-09-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"51","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-99-41","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"211147","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"tr-99-41.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/tr-99-41.pdf","id":211147,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":211147,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/tr-99-41.pdf"}],"msr-author-ordering":[{"type":"text","value":"Bela Bollobas","user_id":0,"rest_url":false},{"type":"user_nicename","value":"borgs","user_id":31278,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=borgs"},{"type":"user_nicename","value":"jchayes","user_id":32200,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jchayes"},{"type":"text","value":"Jeong Han Kim","user_id":0,"rest_url":false},{"type":"user_nicename","value":"dbwilson","user_id":31583,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dbwilson"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152404","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152404\/revisions"}],"predecessor-version":[{"id":514751,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/152404\/revisions\/514751"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=152404"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=152404"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=152404"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=152404"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=152404"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=152404"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=152404"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=152404"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=152404"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=152404"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=152404"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=152404"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=152404"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=152404"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=152404"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=152404"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}