{"id":153414,"date":"2008-01-01T00:00:00","date_gmt":"2008-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/geos-geodesic-image-segmentation\/"},"modified":"2018-10-16T20:12:22","modified_gmt":"2018-10-17T03:12:22","slug":"geos-geodesic-image-segmentation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/geos-geodesic-image-segmentation\/","title":{"rendered":"GeoS: Geodesic Image Segmentation"},"content":{"rendered":"

This paper presents GeoS, a new algorithm for the e\ufb03cient segmentation of n-dimensional image and video data. The segmentation problem is cast as approximate energy minimization in a conditional random \ufb01eld. A new, parallel \ufb01ltering operator built upon e\ufb03cient geodesic distance computation is used to propose a set of spatially smooth, contrast-sensitive segmentation hypotheses. An economical search algorithm \ufb01nds the solution with minimum energy within a sensible and highly restricted subset of all possible labellings. Advantages include: i) computational e\ufb03ciency with high segmentation accuracy; ii) the ability to estimate an approximation to the posterior over segmentations; iii) the ability to handle generally complex energy models. Comparison with max-\ufb02owindicates upto60 times greater computational e\ufb03ciency as well as greater memory e\ufb03ciency. GeoS is validated quantitatively and qualitatively by thorough comparative experiments on existing and novel ground-truth data. Numerous results on interactive and automatic segmentation of photographs, video and volumetric medical image data are presented.<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper presents GeoS, a new algorithm for the e\ufb03cient segmentation of n-dimensional image and video data. The segmentation problem is cast as approximate energy minimization in a conditional random \ufb01eld. A new, parallel \ufb01ltering operator built upon e\ufb03cient geodesic distance computation is used to propose a set of spatially smooth, contrast-sensitive segmentation hypotheses. An […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562,13553],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-153414","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-research-area-medical-health-genomics","msr-locale-en_us"],"msr_publishername":"Springer","msr_edition":"Proc. European Conference on Computer Vision (ECCV)","msr_affiliation":"","msr_published_date":"2008-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"99-112","msr_chapter":"","msr_isbn":"978-3-540-88681-5","msr_journal":"","msr_volume":"5302","msr_number":"","msr_editors":"","msr_series":"Lecture Notes in Computer Science","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"208325","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"GeoS_talk_onweb.zip","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/GeoS_talk_onweb.zip","id":208325,"label_id":0},{"type":"file","title":"ACriminisi_GeoS.zip","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ACriminisi_GeoS.zip","id":208324,"label_id":0},{"type":"file","title":"Criminisi_eccv2008.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/Criminisi_eccv2008.pdf","id":208323,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":208325,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/GeoS_talk_onweb.zip"},{"id":208324,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ACriminisi_GeoS.zip"},{"id":208323,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/Criminisi_eccv2008.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"antcrim","user_id":31055,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=antcrim"},{"type":"user_nicename","value":"tsharp","user_id":34344,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tsharp"},{"type":"user_nicename","value":"ablake","user_id":30797,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ablake"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[169659],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169659,"post_title":"Project InnerEye - Democratizing Medical Imaging AI","post_name":"medical-image-analysis","post_type":"msr-project","post_date":"2008-10-07 05:22:18","post_modified":"2023-07-28 05:51:32","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/medical-image-analysis\/","post_excerpt":"InnerEye is a research project that uses state of the art\u00a0machine learning\u00a0technology to build innovative tools for the automatic, quantitative analysis of three-dimensional medical images.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169659"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/153414"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/153414\/revisions"}],"predecessor-version":[{"id":523981,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/153414\/revisions\/523981"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=153414"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=153414"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=153414"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=153414"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=153414"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=153414"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=153414"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=153414"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=153414"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=153414"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=153414"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=153414"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=153414"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=153414"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=153414"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=153414"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}